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1. INTRODUCTION
Queueing models have been used in the design of telecommu-
nications, manufacturing, service, and healthcare systems. To
analyze a queueing model, Markov chains are usually utilized.
While explicitly or numerically tractable solutions have been
obtained for a number of Markov chains with a special structure
(e.g., Cohen, 1982; Neuts, 1981, 1989; and Tian and Zhang,
2006), it is more challenging to solve generalMarkov chains. For
many design and control problems, on the other hand, approxi-
mation results are good enough for applications. For example,
the loss probability, which plays an important role in the design
of queueing systems, can be approximated by tail asymptotics.
In recent years, the study of tail asymptotics of Markov chains
has attracted the attention of researchers and practitioners (e.g.,
Whitt, 1993; Foley and McDonald, 2005; Kimura et al., 2012,
2013; Li andZhao, 2005a,b;Masuyama, 2011;Miyazawa, 2009;
and references therein.) In this paper, we study the tail asymp-
totics of the GI=G=1 type Markov chains, and apply the results
to analyze vacation queues.

We consider a two-dimensionalMarkov chain fðXn; YnÞ: n ¼
0; 1; 2; : : : g with finitely many background states defined on
state space S ¼ fð0; iÞ; i ¼ 1; : : : ;m0g

Sfðn; jÞ; n ¼ 1; 2; : : : ;

j ¼ 1; : : : ;mg, where Xn is the level variable, and Yn is the
background (phase) variable. The set of states fð0; iÞ; i ¼ 1; : : : ;
m0g is called level zero, and the set of states fðn; iÞ; i ¼ 1; : : : ;
mg is called level n, for n ≥ 1. We assume that the Markov chain
is homogeneous along the level direction except for level zero.
By the partition according to levels, the transition probability
matrix P of theMarkov chain fðXn;YnÞ: n ¼ 0; 1; 2; : : : g can be
expressed in block matrix form:

P ¼

B0 B1 B2 B3 · · ·
B−1 A0 A1 A2 · · ·
B−2 A−1 A0 A1 · · ·
B−3 A−2 A−1 A0 · · ·

..

. ..
. ..

. ..
. . .

.

0
BBBBB@

1
CCCCCA
; ð1Þ

where B0 is an m0×m0 matrix, fBn; n ¼ 1; 2; : : : g are m0×m
matrices, fB−n; n ¼ 1; 2; : : : g are m×m0 matrices, and fAn; n ¼
0;�1;�2; : : : g arem×mmatrices. For convenience, we assume
thatm0 ¼ m. Each block is a collection of transition probabilities
for transitions from some level to another. We call this type of
Markov chains the GI=G=1-type Markov chain. The GI=M=1-
typeMarkov chain, theM=G=1-typeMarkov chain and the quasi
birth-and-death process (QBD) are three special examples whose
transition matrices satisfy the properties, respectively: (1) bothReceived October 2011; Revised 2012; Accepted December 2013
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An ¼ 0 and Bn ¼ 0 for n ≥ 2, (2) both An ¼ 0 and Bn ¼ 0 for
n ≤ −2, and (3) both An ¼ 0 and Bn ¼ 0 for n ≥ 2 and n ≤ −2.
The state space of the Markov chain P, based on the above
partition of states, can be expressed as S ¼ S∞

n¼0 Ln with
Ln ¼ fðn; 1Þ; ðn; 2Þ; · · · ; ðn;mÞg, for n ¼ 0; 1; : : : . Define
L≤n ¼

Sn
l¼0 Ll, and L≥n ¼

S∞
l¼n Ll. Define the following gener-

ating functions: for z ∈ C (the set of all complex numbers),

A�ðzÞ¼
X∞
n¼−∞

znAn; A�
þðzÞ¼

X∞
n¼1

znAn and B�
þðzÞ¼

X∞
n¼1

znBn:

ð2Þ
Let

ϕAþ ¼ min1≤i;j≤m supfjzj ≥ 1: j½A�
þðzÞ�i;jj < ∞g;

ϕBþ ¼ min1≤i;j≤m supfjzj ≥ 1: j½B�
þðzÞ�i;jj < ∞g: ð3Þ

Note that we shall use ½X�i;j to denote the ði; jÞth entry of a
matrix X throughout the paper.

Define χðzÞ as follows: (a) for 0 ≤ jzj < ϕAþ , χðzÞ is the
eigenvalue of A�ðzÞ with the greatest real part; (b) at jz0j ¼
ϕAþ , χðz0Þ ¼ limz→z0: jzj<jz0jχðzÞ. In this paper, we fix α > 1 (if
it exists) such that there exists jzj ¼ α satisfying that χðzÞ ¼ 1
and A�ðzÞ is finite. Whenever α is used, we technically assume
that α exists.

Throughout this paper, the GI=G=1-type Markov chain is
assumed to be aperiodic, irreducible andpositive recurrent. Under
this assumption, its stationary distributionπ exists uniquely and is
positive element-wise. Partition π into π ¼ ðπ0; π1; : : : Þ accord-
ing to the levels,whereπn ¼ ðπn;1; πn;2; : : : ; πn;mÞ,n ¼ 0; 1; : : : .
This paper is concerned with asymptotics of πn, when n is
large. More specificaly, we investigate the limit of ln πn;k when
n → ∞, which is called the logarithmic asymptotics.

The study of logarithmic asymptotic, in general, is of great
interest because of not only theoretical challenges but also its
potential applications, for instance, in the design and control of
high-speed communication networks. The investigations of
logarithmic asymptotic of the stationary distribution of a
Markov chain include exact geometric decay (a special case
of logarithmic asymptotic that implies logarithmic asymptotic
(not vice versa)), logarithmic asymptotic in the general sense,
and relevant applications. Many studies were contributed for
exact geometric asymptotic of the stationary distribution of
M=G=1-type Markov chain with finitely many background
states. For example, Abate et al. (1994), Falkenberg (1994),
and Møller (2001) derived the exact geometric decay rate with
progressively refined conditions when α < minfϕAþ ;ϕBþg.
Takine (2004) considered periodicity of the level variable and
analyzed exact geometric decay when α < ϕBþ and the period
is d. Kimura et al. (2010) analyzed exact geometric decay if
(1) α < minfϕAþ ;ϕBþg and the period of the level variable is
d, (2) ϕBþ < α and B�þðzÞ is a meromorphic function, or
(3) ϕBþ ¼ α < ϕAþ and B�þðzÞ is a meromorphic function. For

further extension to the GI=G=1-type Markov chain with
finitely many background states, Li and Zhao (2005b)
analyzed exact geometric decay when α < minfϕAþ ;ϕBþg and
fAn; n ¼ 0; 1; 2; : : : g is 1-arithmetic. Tai and Zhao (2010)
showed that fπn; n ¼ 0; 1; 2; : : : g has an exact geometric decay
if (1) α < ϕAþ , α ≤ ϕBþ and B�þðαÞ < ∞; (2) α ¼ ϕAþ , and α <
ϕBþ ; (3) ϕBþ < α and limn→∞ϕ

n
BþBn ¼ D ≩ 0; or (4) ϕBþ ≤ ϕAþ

and limn→∞ϕ
n
BþBn ¼ D ≩ 0 (whenA�ðϕAþÞ < ∞, χðzÞ < 1 for all

1 < jzj ≤ ϕAþ ). For the GI=G=1-type Markov chain with finitely
many background states, the tail asymptotics have not been found
for other cases, which is the main issue of interest in this paper.

Contributions on general logarithmic asymptotic include
Glynn and Whitt (1994) that analyzed logarithmic asymptotic
for the steady state of general waiting time process under a
Gartner-Ellis condition of the partial sums of the increment
sequence associated waiting time sequence if the increment
sequence is strictly stationary. The results were applied to the
queue length process of the GI=G=1 queue. Nakagawa (2004)
gave a sufficient condition for the logarithmic asymptotic of
the tail of a complex sequence, based on a singularity analysis of
the generating function associated with a complex sequence.
Foley and McDonald (2005) and Miyazawa (2009) analyzed
the logarithmic asymptotic for special QBD processes with
infinitely many background states. Papers on applications of
logarithmic asymptotic rate to create effective bandwidths for
admission control and other network resource allocation include:
Chang et al. (1992), Chang (1993), and Whitt (1993).

In this paper, we characterize logarithmic asymptotic, by
weakening conditions for the exact geometric decay cases, of
the stationary distribution fπn; n ¼ 0; 1; 2; : : : g for theGI=G=1-
type Markov chain under some light-tailed assumptions on
transition probabilities. It is shown that the logarithmic asymptotic
rate is determined by three factors: α, ϕAþ and ϕBþ . Our study
offers an comprehensive understanding for logarithmic decay for
the GI=G=1-type Markov chain, and also provides a theoretical
basis for applications.

Queueing models with vacations have many applications
and have been investigated extensively. For a queueing system
with server vacations, apparently, the queue length has much to
do with the vacation time. Existing results indicate that the
relationship between the vacation time and the queue length is
complicated (e.g., Doshi, 1986; Lucantoni et al., 1990; and Tian
and Zhang, 2006). Lucantoni et al. (1990) and Lucantoni
(1991) provided a comprehensive study on the BMAP=G=1
queue with or without vacations. In this paper, we exemplify
the theoretical results on the decay of the stationary distributin
of the GI=G=1-type Markov chain by applying them to the
BMAP=G=1 queue with vacations. We focus on the relationship
between the vacation time and the decay rate of the queue length
distribution. We provide a series of examples to explain the
impact of vacation time on the asymptotic rate. The results are
simple and capture the behavior of the tail of the queue length
distribution. It is interesting to observe that decay rate, which is
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given by ðminðα;ϕAþ ;ϕBþÞÞ−1, if it exists, remains constant if
the vacation time is short. The decay rate then changes alongwith
the convergence norm associated with the vacation time.

The rest of this paper is organized as follows. In Section 2, we
provide some preliminaries. In Section 3, we analyze the decay
rate in the logarithmic sense of the stationary distribution for
the GI=G=1-type Markov chain. In Section 4, we analyze tail
asymptotics of the BMAP=G=1 queue with vacations.

2. PRELIMINARIES
In this section, we give a definition of tail asymptotics for the
stationary distribution, provide matrix notations and factoriza-
tion results, and collect some lemmas.

Consider a sequence fMn; n ¼ 1; 2; : : : g of non-negative
m×mmatrices satisfying

P∞
n¼1 Mn < ∞. The sequence fMn; n ¼

1; 2; : : : g is called light-tailed if, for all i ¼ 1; 2; : : : ;m and
j ¼ 1; 2; : : : ;m,

X∞
n¼1

½Mn�i;jexpfεng < ∞; forsome ε > 0;

where ε is independent of i and j. We call fMn; n ¼ 1; 2; : : : g
heavy-tailed if it is not light-tailed.

Along the same line as in Zhao et al. (1998), we define the
R-measures andG-measures for theGI=G=1-typeMarkov chain,
which are matrices Rl;n for l < n and Gl;n for l > n, respectively,
and will be used to analyze tail asymptotics. Rl;n is an m×m
matrix whose ði; jÞth entry is the expected number of visits to
state ðn; jÞ before hitting any state in L≤ðn−1Þ, given that the
process starts in state ðl; iÞ. Gl;n is an m×m matrix whose ði; jÞth
entry is the probability of hitting state ðn; jÞ when the process
entersL≤ðl−1Þ for thefirst time, given that the process starts in state
ðl; iÞ. We call matrices Rl;n and Gl;n the matrices of the expected
numbers of visits to higher levels before returning to lower levels
and the matrices of the first passage probabilities to lower levels,
respectively. We can write Rn−l ¼ Rl;n and Gn−l ¼ Gn;l for l > 0
and n > l, due to the repeating structure in thematrixP.We define
a matrix sequence fΦn; n ¼ 0;�1;�2; : : : g as follows. For
n ≥ 1, partition the transition matrix as

P ¼ L≤n
L≥ðnþ1Þ

Q0 U

V Q1

� �L≤n L≥ðnþ1Þ

:

Set P½n� ¼ ðP½n�
l;kÞl;k¼0; : : : ;n ¼ Q0 þ UQ̂1V , where Q̂1 ¼

ð½Q̂1�l;kÞl;k¼1;2; : : : ¼
P∞

u¼0 Q
u
1. It is shown in Grassmann and

Heyman (1990) that the matrices P
½n�
n−l;n, for 0 ≤ l ≤ n−1, and

P
½n�
n;n−k, for 0 ≤ k ≤ n−1, are both independent of n, if n ≥ 1.

Hence, for n ≥ 1, 0 ≤ l ≤ n−1, and 0 ≤ k ≤ n−1, we can define

Φl ¼ P
½n�
n−l;n; Φ−k ¼ P

½n�
n;n−k:

The following Winner-Hopf factorization is useful (see Li and
Zhao (2005b) for example):

I−A�ðzÞ ¼ ðI−R�ðzÞÞðI−Φ0ÞðI−G�ðzÞÞ;

for z such that A�ðzÞ is finite, where R�ðzÞ ¼ P∞
n¼1 z

nRn and
G�ðzÞ ¼ P∞

n¼1 z
−nGn.

Define the generating function for the stationary distribution
fπn; n ¼ 0; 1; : : : g and thematrix sequence fR0;n; n ¼ 1; 2; : : : g
as π�ðzÞ ¼ P∞

n¼1 z
nπn and R�

0ðzÞ ¼
P∞

n¼1 z
nR0;n, respectively.

Then the stationary distribution fπn; n ¼ 0; 1; : : : g can be ex-
pressed in terms of the R-measures (e.g., Grassmann and Heyman,
1990):

πn ¼ π0R0;n þ
Xn−1
l¼1

πlRn−l; n ≥ 1; ð4Þ

and we have

π�ðzÞðI−R�ðzÞÞ ¼ π0R
�
0ðzÞ: ð5Þ

This relation is useful for analyzing tail properties of the station-
ary distribution.

Define ϕπ ¼ min1≤j≤msupfjzj ≥ 0: j½π�ðzÞ�jj < ∞g. Let ϕR

and ϕR0
be the convergent radii of R�ðzÞ and R�

0ðzÞ respectively.
Define rðzÞ as follows: (a) for 0 ≤ jzj < ϕR, rðzÞ is the eigenvalue
with the largest modulus of R�ðzÞ; (b) at jz0j ¼ ϕR, rðz0Þ ¼
limz→z0:jzj<jz0jrðzÞ.

We provide several lemmas for reader’s convenience.
Lemma 2.1. (Theorem 1 in Li and Zhao 2005b) The radii of

convergence satisfy ϕAþ ¼ ϕR and ϕBþ ¼ ϕR0
.

Lemma 2.2. (Lemma A.4 in Seneta 1981) Let fui; i ¼ 0; 1;
2; : : : g be non-negative numbers such that, for all i, j ≥ 0

uiþj ≥ uiuj:

Suppose the set of those integers i ≥ 1 for which ui > 0 is non-
empty and has g:c:d:, say d, which satisfies d ¼ 1. Then

u ¼ lim
n→∞

ðunÞ
1
n

exists and satisfies 0 < u ≤ ∞; further, for all i ≥ 0, ui ≤ ui.
Lemma 2.3. (Theorem 2.1(i) in Tai and Zhao 2010) Consider

an irreducible positive recurrent GI=G=1-type Markov chain.
Assume that A is irreducible. Then lim supn→∞

ffiffiffiffiffiffiffi
πn;jn

p ¼
lim supn→∞

ffiffiffiffiffiffiffiffi
πn;j 0n

p
and lim inf n→∞

ffiffiffiffiffiffiffi
πn;jn

p ¼ lim inf n→∞
ffiffiffiffiffiffiffiffi
πn;j 0n

p
for

any background states j and j 0.
Lemma 2.4. (Cauchy-Hadamard Theorem in Markushevich

1965) Consider a power series f ðzÞ of a complex sequence fcng
given by f ðzÞ ¼ P∞

n¼0 cnz
n. Denote by r the radius of conver-

gence of the power series. Then, we have
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lim sup
n→∞

jcnj
1
n ¼ 1

r
:

Remark 2.1. It can be shown that if r > 1 in Lemma 2.4, then
lim supn→∞ð

P∞
l¼njcljÞ

1
n ¼ 1

r
.

3. THE DECAY RATE IN THE LOGARITHMIC SENSE
In this section, we characterize the decay rate in the logarithmic
sense of the stationary distribution fπn; n ¼ 0; 1; : : : g for the
GI=G=1-type Markov chain with finitely many background
states whose transition probability matrix P is given by (1). We
first define the decay rate in the logarithmic sense. For each
k ∈ f1; 2; · · · ;mg, the upper decay rate in the logarithmic sense
�Λk of fπn; n ¼ 0; 1; : : : g along the level direction and the lower
decay rate in the logarithmic sense Λk of fπn; n ¼ 0; 1; : : : g
along the level direction can be defined by

�Λk ¼ lim sup
n→∞

1

n
ln �πn;k

and

Λk ¼ lim inf
n→∞

1

n
ln �πn;k;

respectively,where �πn;k ¼
P∞

l¼n πl;k and πn;k is the kth element of
the vector πn. If �Λk ¼ Λk ≜ Λk, then Λk is referred to as the decay
rate in the logarithmic sense of fπn;k; n ¼ 0; 1; : : : g along the
level direction. In particular, if Λk is independent of k, we denote
it by Λ, which is the decay rate in the logarithmic sense of
fπn; n ¼ 0; 1; : : : 0g along the level direction. In our study, we
assume that fAn; n ¼ 0; 1; : : : g and fBn; n ¼ 0; 1; : : : g are
light-tailed, which is equivalent to that fπn; n ¼ 0; 1; : : : g is
light-tailed (Li and Zhao, 2005b). We also assume that A is
irreducible.

To consider the tail asymptotics, we need to study the non-
boundary and boundary transition probabilities. More specifi-
cally, we consider several cases according to the relationship
between α, ϕAþ and ϕBþ , that is, (i) α ≤ ϕBþ ; (ii) ϕAþ ≤ ϕBþ ; and
(iii) ϕBþ < α. To describe our study well, we collect previous
results on exact geometric decay here. If

(1) α < ϕAþ , α ≤ ϕBþ and B�þðαÞ < ∞;

(2) α ¼ ϕAþ , and α < ϕBþ ;

(3) ϕBþ < α and limn→∞ϕ
n
BþBn ¼ D ≩ 0; or

(4) ϕBþ ≤ ϕAþ and limn→∞ϕ
n
BþBn ¼ D ≩ 0 (whenA�ðϕAþÞ < ∞,

χðzÞ < 1 for 1 < jzj ≤ ϕAþ ),

then fπn; n ¼ 0; 1; : : : g was shown to have an exact geometric
decay in Li and Zhao (2005b) and Tai and Zhao (2010), which
implies logarithmic decay. In this section, we weaken conditions
on exact geometric decay, under which the logarithmic decay
exists, but the exact geometric decaymay not. Abate et al. (1995)

provided an example for which the exact decay does not exist,
and logarithmic asymptotics exist.

In the rest of this section, we consider several cases for which
the decay rate in the logarithmic sense exists and is identified.

Theorem 3.1. Assume that there exists jzj ¼ α > 1 such that
χðzÞ ¼ 1 and A�ðzÞ is finite. If α ≤ ϕBþ , α < ϕAþ , fAn; n ¼ 0;
�1;�2; : : : g is 1-arithmatic (see Alsmeyer, 1994), and B�þðzÞ is
a meromorphic function (see Rudin, 1974) on jzj ≤ αþ δ, for
some δ > 0, then the decay rate in the logarithmic sense of
fπn; n ¼ 0; 1; : : : g along the level direction exists, and is
given by

Λ ¼ −ln α:

Proof: It was shown in Li and Zhao (2005b) and Tai and
Zhao (2010) that fπn; n ¼ 0; 1; : : : g has exact geometric decay
when α < ϕAþ , α ≤ ϕBþ and B�þðαÞ < ∞, which implies that the
decay rate in the logarithmic sense exists. Hence, we only need to
prove that our theorem is true, when α < ϕAþ , α ¼ ϕBþ and
B�þðαÞ ¼ ∞.

Firstly, we prove that −ln α is an upper bound on the decay rate
of fπn; n ¼ 0; 1; 2; : : : g in the logarithmic sense. To do this, we
need to analyze the radius of convergence of π�ðzÞ. It is easy to
see that for jzj ≤ 1,π�ðzÞ isfinite. Sincewe restrict our discussion
to the case: α < ϕAþ , and α ¼ ϕBþ , we have, for 1 < jzj < α, the
inverse of I−R�ðzÞ always exists and R�

0ðzÞ is finite on jzj < α.
Noting that for 1 < jzj < α, we have π�ðzÞ ¼ π0R

�
0ðzÞ½I−R�ðzÞ�−1,

and π�ðzÞ is finite. On the other hand, we also have π�ðαÞ ¼ ∞
elementwise since there is at least one positive entry in each
column of R�

0ðzÞ, which may be infinite when z ¼ α, and
detðI−R�ðαÞÞ ¼ 0. Consequently, α is the radius of convergence
of π�ðzÞ. Hence, by Lemma 2.4 (Cauchy-Hadamard theorem),
we obtain that for each k,

lim sup
n→∞

1

n
ln �πn;k ¼ −ln α: ð6Þ

Next, we show that −ln α is a lower bound on the lower decay
rate of fπn; n ¼ 0; 1; 2; : : : g in the logarithmic sense. From the
assumption, B�þðzÞ is a meromorphic function on jzj ≤ α. It is
easy to know that α is the radius of convergence of B�þðzÞ when
α < ϕAþ , α ¼ ϕBþ and B�þðαÞ ¼ ∞. Hence, from Theorem 2 in
Nakagawa (2004), we obtain that for some i0 and k0,

lim
n→∞

1

n
ln ½�Bn�i0;k0 ¼ −ln α: ð7Þ

where �Bn ¼
P∞

l¼n Bl. From equation (4) and Theorem 12 in Zhao
(2000), we have that

πn ≥ π0R0;n ≥ π0Bn:
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Then,

̄πn;k0 ≥ π0;i0 ½�Bn�i0;k0 ;
which leads to

1

n
ln �πn;k0 ≥

1

n
ln π0;i0 þ

1

n
ln ½�Bn�i0;k0 :

From equation (7), we have that

lim inf
n→∞

1

n
ln �πn;k0 ≥ −ln α:

By Lemma 2.3, for each k,

lim inf
n→∞

1

n
ln �πn;k ≥ −ln α: ð8Þ

Finally, combining equations (6) and (8), we obtain that for
each k,

Λ ¼ lim
n→∞

1

n
ln �πn;k ¼ −ln α:

Together with the results on exact geometric decay in Li
and Zhao (2005b) and Tai and Zhao (2010), we complete the
proof. □

Remark 3.1. It is noted that the case with α ¼ ϕBþ and
B�þðαÞ < ∞ is not covered by Theorem 3.1 since B�þðzÞ is not
meromorphic on jzj ≤ α. But, from Theorem 3.2 in Tai and Zhao
(2010), if α ¼ ϕBþ < ϕAþ and B�þðαÞ < ∞, fπn; n ¼ 0; 1; : : : g
has exact geometric decay, and, consequently, Λ also exists.

Next, we consider the case for which there exists no jzj > 1
such that A�ðzÞ is finite and χðzÞ ¼ 1. Before stating the results,
we give a definition along the same line with Li and Zhao
(2005a). For a sequence of matrices fMn; n ¼ 1; 2; : : : g of size
m×m, if there is a scalar sequence fρn; n ¼ 1; 2; : : : g and a finite
matrixW ≩ 0 such that limn→∞ �Mn=�ρn ¼ W , where �Mn ¼

P∞
l¼n

Ml and �ρn ¼
P∞

l¼n ρl, we call the sequence fρn; n ¼ 1; 2; : : : g
and the matrixW a uniformly dominant sequence of the matrices
fMn; n ¼ 1; 2; : : : g and the associated ratiomatrix, respectively.

Theorem 3.2. Assume that there exists no such jzj > 1 that
A�ðzÞ is finite and χðzÞ ¼ 1.We also assume ϕAþ ≤ ϕBþ . If
fAn; n ¼ 1; 2; : : : g has a uniformly dominant sequence
fρn; n ¼ 1; 2; : : : g with associated ratio matrix W satisfying
lim inf n→∞

1
n
ln �ρn ≥ −lnϕAþ , then the decay rate in the logarith-

mic sense of fπn; n ¼ 0; 1; : : : g along the level direction exists,
and is given by

Λ ¼ −lnϕAþ :

Proof:Without loss of generality,we assume that the ði0; j0Þth
entry of W is positive. Thus, the entry sequence f½An�i0;j0 ; n ¼
1; 2; : : : g of fAn; n ¼ 1; 2; : : : g satisfies limn→∞½�An�i0; j0=�ρn ¼

½W �i0;j0 > 1
2 ½W �i0;j0 , where �An ¼

P∞
l¼n Al. Then, there exists

sufficiently large N such that for all n > N,

½�An�i0;j0 ≥
1

2
½W �i0;j0�ρn;

which leads to

1

n
ln½�An�i0;j0 ≥

1

n
ln

1

2
½W �i0;j0

� �
þ 1

n
ln �ρn:

Therefore, lim inf n→∞
1
n
ln ½�An�i0; j0 ≥ −lnϕAþ . Next, from equa-

tion (4), we know

X∞
l¼n

πl ≥ π1An−1 þ π1
�An ≥ π1

�An;

which leads to

1

n
ln �πn;j0 ≥

1

n
ln π1;i0 þ

1

n
ln½�An�i0;j0 :

Hence,

lim inf n→∞
1

n
ln �πn;j0 ≥ lim inf n→∞

1

n
ln π1;i0

þlim inf n→∞
1

n
ln½�An�i0;j0

¼ lim inf n→∞
1

n
ln½�An�i0;j0

≥ −lnϕAþ :

By Lemma 2.1, we obtain ϕAþ ¼ ϕR. Since there exists no
such jzj > 1 that A�ðzÞ is finite and χðzÞ ¼ 1, we have that
ðI−R�ðzÞÞ−1 always exists when 1 < jzj < ϕAþ . Hence, by equa-
tion (5), we have that, for any jzj < ϕAþ , π

�ðzÞ is finite since
ϕAþ ≤ ϕBþ , and, for any jzj > ϕAþ , π

�ðzÞ is infinite since R�ðzÞ is
infinite. So ϕAþ is the radius of convergence of π�ðzÞ. Then we
have by Lemma 2.4 (Cauchy-Hadamard theorem) that

lim sup
n→∞

1

n
ln �πn;j0 ¼ −lnϕAþ :

Consequently, we have

lim
n→∞

1

n
ln �πn;j0 ¼ −lnϕAþ :

From Lemma 2.3, for every background state j,

lim
n→∞

1

n
ln �πn;j ¼ −lnϕAþ : □
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Wewish to provide a short note on conditions of Theorem 3.2.
In fact, that fAn; n ¼ 1; 2; : : : g has a uniformly dominant
sequence fρn; n ¼ 1; 2; : : : g with associated ratio matrix W

satisfying lim inf n→∞
1
n
ln �ρn ≥ −lnϕAþ is equivalent to the

condition that there exists an entry sequence, say f½An�i0;j0 ;
n ¼ 1; 2; : : : g, of fAn; n ¼ 1; 2; : : : g satisfying lim inf n→∞

1
n

ln ½�An�i0; j0 ≥ −lnϕAþ .
In Theorems 3.1 and 3.2, we condition the logarithmic

decay on the meromorphic function and the size of jumps of
the Markov chain. In the following theorem, we provide a
condition on the fundamental matrix. In the proof of the next
theorem, we do not distinguish whether or not there exists
jzj ¼ α > 1 such that A�ðzÞ and χðzÞ ¼ 1, since we can prove the
theorem in a unified way.

Theorem3.3. If α ≤ ϕBþ (orϕAþ ≤ ϕBþ , instead, if α does not
exist) where α is given in Theorem 3.1 if it exists, and Q1 is
irreducible, then the decay rate in the logarithmic sense of
fπn; n ¼ 0; 1; : : : g along the level direction exists, and is given by

Λ ¼ −ln α ðor−lnϕAþ ; instead; if α does not existÞ:

Proof: Let R̂j;jðnÞ ¼ ½P∞
l¼n

P∞
u¼1R

⊛u
l �j;j, where R⊛u

l denotes
u-fold convolution of fRn; n ¼ 1; 2; : : : g (see Li and Zhao
(2005a)). Then R̂j;jðlþ nÞ ≥ R̂j;jðlÞR̂j;jðnÞ. First, we show for

some j, the sequence fR̂j;jðnÞ; n ¼ 1; 2; : : : g satisfies Lemma 2.2
if Q1 is irreducible. Then a lower bound for the lower decay rate
in the logarithmic sense of fπn;j; n ¼ 0; 1; : : : g can be obtained

in terms of the convergent parameter of fR̂j;jðnÞ; n ¼ 1; 2; : : : g
in the next two parts.

Part 1: Let e be the column vector of ones. Firstly, ifP∞
n¼2 Ane ≠ 0, let Lkð�A2Þ be the set of states in Lk (i.e., level

k) corresponding to positive elements of the vector
P∞

n¼2 Ane,
and ~Lkð�A2Þ be the set of states in Lk corresponding to zero
elements of the vector

P∞
n¼2 Ane. Let �Rð2Þ ¼ P∞

n¼2 Rn, by
Lemma 4 in Zhao (2000),

�Rð2Þ ¼
�X∞

n¼2

An;
X∞
n¼2

Anþ1;
X∞
n¼2

Anþ2; · · ·

�
Q̂1ð·; 1Þ;

where Q̂1ð·; 1Þ is the first column of the matrix Q̂1. Therefore, the
jth row of �Rð2Þ is a zero vector if ðk; jÞ ∈= Lkð�A2Þ. Let R�A2

be the
sub-matrix of �Rð2Þ corresponding to the index set
Lkð�A2Þ×Lkð�A2Þ. If Q1 is irreducible, R�A2

is a positive matrix
and, consequently, irreducible since Q̂1ð·; 1Þ is positive. So, we
canfind an irreducible subclass of �Rð2Þ. By suitably changing the
order of rows and columns, �Rð2Þ can be rewritten as

�Rð2Þ ¼ ðR�A2
~R�A2

00Þ;

where ~R�A2
is the submatrix of �Rð2Þ corresponding to the index

set Lkð�A2Þ×~Lkð�A2Þ. Therefore, we can find a positive element on

the main diagonal of �Rð2Þ, that is, for some j, the sequence
fR̂j;jðnÞ; n ¼ 1; 2; : : : g satisfies Lemma 2.2. In fact, the se-

quence fR̂j;jðnÞ; n ¼ 1; 2; : : : g is decreasing. If for some n0,

R̂j;jðn0Þ is positive, then for all n ≤ n0, R̂j;jðnÞ is positive.

Hence, the set of those integers n ≥ 2 for which R̂j;jðnÞ < 0

has g:c:d: of 1. The set is non-empty since R̂j;jð2Þ > 0.
Secondly, if

P∞
n¼1 Ane ≠ 0 and

P∞
n¼2 Ane ¼

P∞
n¼3 Ane ¼

· · ·¼ 0, then we have R1 ≠ 0, R2 ¼ R3 ¼ · · ·¼ 0. Hence, we
have the following representations:

π�ðzÞ ¼ π0R
�
0ðzÞðI þ zR1 þ z2R2

1þ · · · þznRn
1þ · · · Þ:

We can find a positive element on the main diagonal of R1.
Therefore, we can similarly apply Lemma 2.2 to Rn

1.
Thirdly, if

P∞
n¼1 Ane ¼

P∞
n¼2 Ane ¼

P∞
n¼3 Ane ¼ · · ·¼ 0,

then we have R1 ¼ R2 ¼ R3 ¼ · · ·¼ 0 and πn ¼ π0R0;n. It is
impossible when non-boundary transition probabilities play a
dominant role in tail behavior.

Part 2: We construct a lower bound for the tail of the
stationary distribution in terms of fR̂j;jðnÞ; n ¼ 1; 2; : : : g. By
the discussion in the first part, we know that there is at least one
positive entry on the main diagonal of �Rð2Þ (or R1 in the second
case, instead). Without loss of generality, we assume that the
ðj; jÞth entry on the main diagonal of �Rð2Þ (or R1 in the second
case, instead) is positive. From equation (3.8) in Li and Zhao
(2005a), we have that

̄πn ¼
X∞
l¼n

π0R0;l⊛
X∞
u¼1

R⊛u
l : ð9Þ

Since there is at least one positive entry in each column of
R0 ≜ R�

0ð1Þ, we assumewithout loss of generality that the positive
entry of the jth column of R0 is ½R�

0ð1Þ�i0;j ¼ ½R0;1�i0;jþ
½R0;2�i0;j þ : : : , where ½R0;n�i0;j is the ði0; jÞth entry of R0;n. We
can find a sufficiently large N such that for some n0 < N,
½R0;n0 �i0;j > 0, since the tail of ½R�

0ð1Þ�i0;j tends to 0. From
equation (9), we have that for sufficiently large n,

̄πn ≥ π0R0;n0

�X∞
l¼n

X∞
u¼1

R⊛u
l−n0

� �
or π0R0;n0

X∞
l¼n

R
l−n0
1

�
:

Then,

�πn;j ≥ π0;i0 ½R0;n0 �i0;j
�X∞

l¼n

X∞
u¼1

R⊛u
l−n0

�
j;j

: ð10Þ

Part 3: We analyze the convergent parameter of fR̂j;jðnÞ; n ¼
1; 2; : : : g. If there exists an jzj ¼ α > 1 such that χðzÞ ¼ 1 and
A�ðzÞ is finite, we have that α is the radius of convergence ofP∞

n¼0 z
n
P∞

u¼1 R
⊛u
n . In fact, for 1 < jzj < α,

P∞
n¼0 z

n
P∞

u¼1 R
⊛u
n

¼ ðI−R�ðzÞÞ−1 is finite, but P∞
n¼0 α

n
P∞

u¼1 R
⊛u
n is infinite since
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the inverse of I−R�ðαÞ does not exist. If there exists no jzj > 1
such that A�ðzÞ is finite and χðzÞ ¼ 1, we have that ϕAþ is the

radius of convergence of
P∞

n¼0 z
n
P∞

u¼1 R
⊛u
n , instead. By Re-

mark 2.1, α (or ϕAþ , instead, if α does not exist) is the convergent

parameter of fR̂j;jðnÞ; n ¼ 1; 2; : : : g. Therefore, from Lemma
2.2 and equation (10), we have

liminf
n→∞

1

n
ln�πn;j ≥−lnαðor−lnϕAþ ; instead; if αdoes not existÞ:

Since α (or ϕAþ , instead, if α does not exist) is the radius of
convergence of π�ðzÞ (see corresponding discussion in
Theorem 3.1 and 3.2 for details), by Cauchy-Hadamard
theorem, we have

limsup
n→∞

1

n
ln�πn;j¼−lnαðor−lnϕAþ ; instead; if α does not existÞ:

So,

lim
n→∞

1

n
ln �πn;j ¼ −lnαðor−lnϕAþ ; instead; if α does not existÞ:

Then, from Lemma 2.3, we obtain that

Λ ¼ −ln α ðor−lnϕAþ ; instead; if α does not existÞ: □

If ϕBþ < α (or ϕBþ < ϕAþ if α does not exist), boundary
transition probabilities have a dominant impact on tail behavior.
In the following, we provide conditions on the logarithmic decay
in this situation.

Theorem 3.4. IfϕBþ ≤ α (orϕBþ ≤ ϕAþ , instead, if α does not
exist), where α is given in Theorem 3.1 if it exists, and fBn; n ¼
1; 2; : : : g has auniformly dominant sequencefρn; n ¼ 1; 2; : : : g
with associated ratio matrix W satisfying lim inf n→∞

1
n
ln �ρn ≥ −

lnϕBþ , then the decay rate in the logarithmic sense of fπn; n ¼
0; 1; : : : g along the level direction exists, and is given by

Λ ¼ −lnϕBþ :

Proof:Without loss of generality, we assume that the ði0; j0Þth
entry ofW is positive. Therefore, the entry sequence f½Bn�i0;j0 ; n ¼
1; 2; : : : g of fBn; n ¼ 1; 2; : : : g satisfies limn→∞½�Bn�i0;j0=�ρn ¼
½W �i0;j0 > 1

2 ½W �i0;j0 , where �Bn ¼
P∞

l¼n Bl. Hence, lim inf n→∞
1
n

ln½�Bn�i0; j0 ≥ −lnϕBþ . From equation (4) and Theorem 12 in Zhao
(2000), we have that

πn ≥ π0R0;n ≥ π0Bn:

Then,

�πn;j0 ≥ π0;i0 ½�Bn�i0; j0;
which leads to

1

n
ln �πn;j0 ≥

1

n
ln π0;i0 þ

1

n
ln½�Bn�i0;j0 :

Hence,

lim inf n→∞
1

n
ln �πn;j0 ≥ lim inf n→∞

1

n
ln π0;i0

þlim inf n→∞
1

n
ln½�Bn�i0;j0

¼ lim inf n→∞
1

n
ln½�Bn�i0;j0

≥ −lnϕBþ :

On the other hand, we assume that ϕBþ ≤ α if α exists. In this
case, ϕBþ is the radius of convergence of π�ðzÞ. In fact, we have
that, for any 1 < jzj < ϕBþ , R

�
0ðzÞ is finite and the inverse of

I−R�ðzÞ exists, therefore, π�ðzÞ is finite. But, for jzj > ϕBþ , π
�ðzÞ

is infinite since R�
0ðzÞ is infinite. If α does not exist, we assume

thatϕBþ ≤ ϕAþ , instead. Similarly, for any 1 < jzj < ϕBþ ,R
�
0ðzÞ is

finite and the inverse of I−R�ðzÞ exists, therefore, π�ðzÞ is finite;
for jzj > ϕBþ , π

�ðzÞ is infinite, sinceR�
0ðzÞ is infinite. Thus,ϕBþ is

the radius of convergence of π�ðzÞ. By Lemma 2.4 (Cauchy-
Hadamard theorem), we have

lim sup
n→∞

1

n
ln �πn;j0 ¼ −lnϕBþ :

Then,

lim
n→∞

1

n
ln �πn;j0 ¼ −lnϕBþ :

From Lemma 2.3, for each background state j, we obtain

lim
n→∞

1

n
ln �πn;j ¼ −lnϕBþ : □

Theorem 3.5. If ϕBþ < αðorϕBþ < ϕAþ ifα does not existÞ,
where α is given in Theorem 3.1 if it exists, and B�þðzÞ is
meromorphic on jzj ≤ ϕBþ , then the decay rate in the logarithmic
sense offπn; n ¼ 0; 1; : : : g along the level direction exists, and is
given by

Λ ¼ −lnϕBþ :

Proof: We show that ϕBþ is the radius of convergence of
π�ðzÞ. SinceR�

0ðzÞ is finite on jzj < ϕBþ and ðI−R�ðzÞÞ−1 exists on
1 < jzj ≤ ϕBþ , we have that π

�ðzÞ is finite on jzj < ϕBþ . Due to
π�ðϕBþÞ ≥ π0R

�
0ðϕBþÞ ≥ π0B

�þðϕBþÞ ¼ ∞ , we obtain that ϕBþ
must be the radius of convergence of π�ðzÞ. Then, from Lemma
2.4 (Cauchy-Hadamard theorem), we have that for some k0,

lim sup
n→∞

1

n
ln �πn;k0 ¼ −lnϕBþ :
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Lemma 2.3 implies the above inequality holds when k0 is any
background state. Similar to the proof of Theorem 3.1, we have
that−lnϕBþ is also a lower boundon lim inf n→∞

1
n
ln �πn;k , for each

k. Hence, the decay rate in the logarithmic sense of fπn; n ¼
0; 1; : : : g along the level direction exists, and is given by

Λ ¼ −lnϕBþ :
□

Remark 3.2. The decay rate in the logarithmic sense may not
exist. A counter example was given inNakagawa (2004) showing
that the stationary distribution does not decay exponentially.

4. APPLICATIONS TO THE BMAP=G=1 QUEUE WITH
MULTIPLE VACATIONS
In this section, we apply the theoretical results to a single server
exhaustive multiple vacation queue with a batch Markovian
arrival process (BMAP). The BMAP=G=1 queue with multiple
vacations is defined as follows.

• Customers arrive according to a BMAP with matrix represen-
tation ðD0;D1; : : : Þ, where fDk; k ¼ 0; 1; : : : g are m×m
matrices,D0 has negative diagonal elements and non-negative
off-diagonal elements, and fDk; k ¼ 1; 2; : : : g are non-nega-
tive. Assume that D ≜

P∞
k¼0 Dk is an irreducible infinitesimal

generator andD ≠ D0. The fundamental arrival rate is defined
as λ ¼ θ

P∞
n¼1 nDne, where θ satisfies θD ¼ 0 and θe ¼ 1.

• There is a single server in the system. Service times are i.i.d.
random variables with distribution function WðtÞ and finite
mean 1=μ;

• We assume that a vacation of the sever begins when the system
becomes empty. At a vacation completion instant, if there is no
customer in the system, then the server takes another vacation
and repeats it until there is at least one customer in the system at
the end of a vacation; For the latter case, the server begins to
serve customers.

• Vacation times are i.i.d. random variables with distribution
function VðtÞ and finite mean 1=ν.

• The arrival process, the service times and the vacation times
are all assumed to be mutually independent.

We now turn to the study of theMarkov chain associated with
the queue length process embedded at departure epoches for the
BMAP=G=1 queue with multiple vacations, whose transition
matrix is of the M=G=1-type and is given by

P ¼

B0 B1 B2 B3 · · ·
A−1 A0 A1 A2 · · ·

A−1 A0 A1 · · ·
A−1 A0 · · ·

. .
. . .

.

0
BBBBB@

1
CCCCCA
;

where fBn; n ¼ 0; 1; : : : g and fAn; n ¼ −1; 0; 1; : : : g are m×m
matrices, which are defined as

½An�i;j ¼ P fGiven a departure at time 0, which left at least one
customer in the system and the arrival process in phase i, the next
departure occurs with the arrival process in phase j, and during
that service there were nþ 1 arrivalsg.

½Bn�i;j ¼ P fGiven a departure at time 0, which left the system
empty and the arrival process in phase i, the next departure occurs
with the arrival process in phase j, leaving n customers in the
systemg.

We similarly define fVn; n ¼ 0; 1; : : : g as follows
½Vn�i;j ¼ P fGiven that a vacation begins at time 0, with the

arrival process in phase i, the end of vacation occurswith the arrival
process in phase j, and during the vacation there were n arrivalsg.

We assume that ρ ¼ λ
μ < 1 so that the queueing system is

stable and the Markov chain is ergodic. Define generating
functions

A�ðzÞ ¼
X∞
n¼−1

znAn; B�ðzÞ ¼
X∞
n¼0

znBn;

V�ðzÞ ¼
X∞
n¼0

znVn; D�ðzÞ ¼
X∞
n¼0

znDn:

Without loss of generality, we only consider z in real number
in this section. By analogy to Lucantoni et al. (1990), we have the
following properties

zA�ðzÞ¼
Z ∞

0
eD

�ðzÞtdWðtÞ; V�ðzÞ¼
Z ∞

0
eD

�ðzÞtdVðtÞ: ð11Þ

From Theorem 1 in Lucantoni et al. (1990),

B�ðzÞ ¼ ½I−V�ð0Þ�−1½V�ðzÞ−V�ð0Þ�A�ðzÞ: ð12Þ

Define ϕV ¼ min1≤i;j≤msupfz ≥ 1 : ½V�ðzÞ�i;j < ∞g. Recall
that ϕAþ and ϕBþ are radii of convergence of A�ðzÞ and B�ðzÞ,
respectively. In our study, we assume that WðtÞ and VðtÞ are
light-tailed. From equation (11), fAn; n ¼ −1; 0; 1; : : : g being
light-tailed is equivalent toWðtÞ being light-tailed; and fVn; n ¼
0; 1; : : : g being light-tailed is equivalent to VðtÞ being light-
tailed. For z > 0, let ρðzÞ the eigenvalue with the greatest real
part of D�ðzÞ and ~γðzÞ be the Perron-Frobenius eigenvalue of
zA�ðzÞ. Set μðzÞ and νðzÞ to be the left and right eigenvectors
corresponding to ρðzÞ, respectively, satisfying μðzÞe ¼ 1 and
μðzÞνðzÞ ¼ 1. Then, the following properties hold:

(a) For z > 0, we have that ρðzÞ is strictly increasing in z (see
M-matrix in Seneta (1981)).

(b) μðzÞ and νðzÞ are also the left and right eigenvectors of zA�ðzÞ
corresponding to ~γðzÞ, respectively.

(c) ~γðzÞ ¼ ∫ ∞
0 e

ρðzÞtdWðtÞ.

Lemma 4.1. There exists sufficiently large z0 such that ρðzÞ >
z
m0
m and ~γðzÞ ≥ z, where 1 ≤ m0 ≤ m, for z > z0.
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Proof: Choose δ ≥ maxf−di;i; i ¼ 1; 2; : : : ;mg, where
fdi;i; i ¼ 1; 2; : : : ;mg, are the diagonals of D0. Then, D

�ðzÞ þ
δI ≥ 0 and ρðzÞ þ δ is the Perron-Frobonius eigenvalue of
D�ðzÞ þ δI. Since D is irreducible andD0 ≠ D,D�ðzÞ is irreduc-
ible and we assume without loss of generality that D1 ≠ 0.
Therefore, ρðzÞ þ δ is strictly increasing in z. then

ðρðzÞþδÞm≥jdetðD�ðzÞþδIÞj
¼jcm0

zm0þcm0−1z
m0−1þ :::þc0j;

ðw:l:o:g:;cm¼ :::¼cm0þ1¼0;cm0
≠0Þ

¼jcm0
jjzm0 j

����1þcm0−1

cm0

1

z
þ :::þ c0

cm0

1

zm0

����:

If z → ∞, then ðρðzÞ þ δÞm ≥ ðjcm0
j þ 1Þjzm0 j. Therefore,

ρðzÞ ≥ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijcm0
j þ 1m

p
z
m0
m
−δ if z is sufficiently large. Since the

service time is not zero with probability one, there exists t0 >
0 such thatWðt0Þ < 1, or equivalently, 1−Wðt0Þ > 0. Hence, we
have, for sufficiently large z,

~γ~ðzÞ ≥
Z ∞

t0

eρðzÞtdWðtÞ

≥ ð1−Wðt0ÞÞeρðzÞt0

≥ ð1−Wðt0ÞÞeð
ffiffiffiffiffiffiffiffiffiffiffi
jcm0 jþ1m

p
z
m0
m −δÞt0

≥ z:
□

Lemma 4.1 provides an approach to find 1 < α < ϕAþ such
that ~γðαÞ ¼ α. Let ~WðsÞ be the Laplace-Stieltjes transform of
WðtÞ and σW the abscissa of convergence of ~W , that is, if
ReðsÞ < σW , ~WðsÞ diverges;ReðsÞ > σW , ~WðsÞ converges. Then,
ϕAþ ¼ ρ−1ð−σWÞ and ϕAþ > 1 ⇔ σW < 0 (Falkenberg 1994).
We also have that

~γðzÞ ¼ z; z ∈ ð1;ϕAþ � ⇔ ~WðxÞ ¼ ρ−1ð−xÞ; x ∈ ½σW ; 0Þ:

Then, we have the following lemma.
Lemma 4.2. A solution to equation ~WðxÞ ¼ ρ−1ð−xÞ;

x ∈ ½σW ; 0Þ, exists if and only if limx→σW
~WðxÞ ≥ ρ−1ð−σWÞ.

Proof: Sufficiency: If ~W is divergent at σW < 0 or ~W is
convergent at σW < 0 and limx→σW

~WðxÞ > ρ−1ð−σWÞ, it is con-
firmed in Falkenberg (1994). If ~W is convergent at σW < 0 and
limx→σW

~WðxÞ ¼ ρ−1ð−σWÞ, we have that the solution is
x0 ¼ σW ¼ −ρðϕAþÞ.

Necessity: It is obvious since there is at most a solution to
equation: ~γðzÞ ¼ z; z ∈ ð1;ϕAþ �. □

If α exists, it is clear that 1 < α ≤ ϕAþ . It is possible that α
does not exists (See Example 4.2). For this case, we assume
α ¼ ∞ for convenience. By equation (12), we have that
ϕBþ ¼ minfϕAþ ;ϕVg. Define ρ̂ ¼ ðminfα;ϕAþ ;ϕVgÞ−1.
Now, we are ready to state and prove the main result of this
section.

Theorem 4.1. Assume that WðtÞ and VðtÞ are light-tailed. If
the logarithmic asymptotic of the stationary distribution for the
BMAP=G=1 vacation queue exists, then the decay rate in the
logarithmic sense is given by

Λ ¼ lnρ̂:

Furthermore, if exact geometric decay exists, then the decay
rate is given by

ρ̂ ¼ 1

minfα;ϕVg
:

Proof: By an analogous argument to Section 3, we have that
1=ρ̂ is the radius of convergence of π�ðzÞ. By Cauchy-Hadamard
theorem, �Λ ¼ ln ρ̂. Therefore, if the logarithmic asymptotic of
the stationary distribution for the BMAP=G=1 vacation queue
exists, the decay rate in the logarithmic sense is given by
Λ ¼ ln ρ̂. □

In the following, we present some interesting observations on
the relationship between the vacation time and the tail of the
stationary distribution of the queue length. Methods for comput-
ing ϕAþ , ϕV and α are provided as well.

Example 4.1. The M=M=1 queue with multiple vacations
In this queueing model, customers arrive according to a Poisson
process with parameter λ, the service time has an exponential
distribution with parameter μ, and the vacation time has a
distribution VðtÞ. For this example, we have

zA�ðzÞ ¼ μ

λþ μ−λz
; V�ðzÞ ¼

Z ∞

0
e−λð1−zÞtdVðtÞ:

It is easy to find α ¼ μ
λ and ϕAþ ¼ 1þ μ

λ , respectively. From
Theorem 4.1, the decay rate ρ̂ ¼ ðminfα;ϕVgÞ−1, in the loga-
rithmic sense. Next, wefind explicit solutions for a series of cases
with specific distributions of the vacation time.
a) VðtÞ has an exponential distribution with parameter ν For

this case, V�ðzÞ ¼ ∫ ∞
0 e

−λð1−zÞtνe−νtdt ¼ ν
λþν−λz. It is easy to

find ϕV ¼ 1þ ν
λ. Then we have that (1) if μ < λþ ν, the exact

geometric decay rate is given by ρ̂ ¼ λ
μ; (2) if μ ¼ λþ ν, the

decay rate in the logarithmic sense is given by ln ρ̂with ρ̂ ¼ λ
μ;

and (3) ifμ > λþ ν, the exact geometric decay rate is given by
ρ̂ ¼ λ

λþν.
This example indicates that, if the vacation time is short,

the decay rate of the distribution of the queue length remains
the same,while the distribution of the queue length is different
for different (small) 1=ν. So, for cases with a short vacation
time (i.e., small 1=ν), the tail asymptotics of the distribution of
queue length is not changed. On the other hand, if the vacation
time is long (i.e., large 1=ν), the decay rate of the distribution
of the queue length changes as the distribuiton of the vacation
time changes. This observation holds, in the logarithmic
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sense, for the general case as indicated by Theorem 4.1 and
demonstrated by Figure 4.1.

b) VðtÞ has an Erlang distribution ðk; θÞ Consider VðtÞ with
the probability density function f ðt; k; θÞ ¼ tk−1 e

− t
θ

θkΓðkÞ, where

t ≥ 0; k; θ > 0 and k is an integer. In this case, we have

V�ðzÞ ¼
Z ∞

0
e−λð1−zÞttk−1

e−
t
θ

θkΓðkÞ dt ¼
ð1θÞk

ðλð1−zÞ þ 1
θÞk

:

It is easy to find ϕV ¼ 1þ 1
θλ. Then we have that (1) if μ < λþ 1

θ,
the exact geometric decay rate is given by ρ̂ ¼ λ

μ; (2) if

μ ¼ λþ 1
θ, the decay rate in the logarithmic sense is given by

ln ρ̂ with ρ̂ ¼ λ
μ; and (3) if μ > λþ 1

θ, the decay rate in the

logarithmic sense is given by ρ̂ ¼ λðλþ 1
θÞ−1. That is,

ρ̂ ¼ λðminfμ; λþ 1
θgÞ−1, for all cases.

We would like to remark that, for the M=M=1 queue with
Erlang vacation times, the asymptotic results can be obtained by
using the matrix-geometric solution πn ¼ π1R

n−1, n ≥ 1, for the
queue length at an arbitrary time. For this case, the Jordan
canonical form of the matrix R can be found explicitly. Conse-
quently, the tail asymptotics can be identified. If μ < λþ 1

θ, the
Perron-Frobenius eigenvalue of R is simple and πn∼ρ̂−n. If
μ ¼ λþ 1

θ, the Perron-Frobenius eigenvalue of R is not simple

and πn∼nkþ1ρ̂−n. If μ > λþ 1
θ, the Perron-Frobenius eigenvalue

ofR is not simple andπn∼nkρ̂−n. However, the approach does not
work for more general cases (See Example 4.3).
c) VðtÞ has an Weibull distribution ðk; θÞ Consider VðtÞ with

the probability density function f ðt; k; θÞ ¼ k
θ ð tθÞk−1e−ð

t
θÞk ,

where t ≥ 0; k; θ > 0. The mean of VðtÞ is θΓð1þ 1
k
Þ. We

have that Vn ¼ ∫ ∞
0

ðλtÞn
n! e−λt kθ ð tθÞk−1e−ð

t
θÞk dt, therefore, V�ðzÞ

¼ ∫ ∞
0 e

−λð1−zÞt k
θ ð tθÞk−1e−ð

t
θÞk dt For k < 1, Weibull distribution

is heavy-tailed. Therefore, we have ϕV ¼ 1. We see from
equation (12) that when the vacation time has a heavy-tailed
distribution, the stationary distribution is also heavy-tailed.

This example shows that the tail of the distributin of the queue
length can be affected greatly by the vacation time distri-
bution, not just by the mean and the variance of the vacation
time. In fact, for this case, the queue length distribution is
heavy-tailed no matter what is the mean and variance of the
vacation time (as long as system stabiltiy is guaranteed.)

Example 4.2. The M=G=1 queue with multiple vacations
Assume that the arrival process is Poisson with parameter λ, the
service time has distribution WðtÞ, and the vacation time has
distribution VðtÞ. We also assume that there exists jz0j > 1 such
that V�ðz0Þ ¼ ∫ ∞

0 e
−λð1−z0ÞtdVðtÞ < ∞, that is, VðtÞ is light-tailed.

Now, we consider WðtÞ as WðtÞ ¼ 0 for t < 1; WðtÞ ¼ f0 þ
∫ t
1

1
x2
e−μxdx for t ≥ 1, where μ > 0, for which Falkenberg (1994)

showed that α does not exist if 0 < λ < μ
f0e

μ . Then, if the logarith-

mic asymptotic exists, the decay rate in the logarithmic sense is
given by ln ρ̂ with ρ̂ ¼ ðminfϕV ;ϕAþgÞ−1.

Example 4.3. The BMAP=Gamma=1 queue with multiple
vacations Consider WðtÞ with the probability density function

f ðt; k1; θÞ ¼ tk1−1 e
− t
θ1

θ
k1
1 Γðk1Þ

, where t ≥ 0; k1; θ1 > 0, and VðtÞ with

the probability density function f ðt; k2; θ2Þ ¼ tk2−1 e
− t
θ2

θk2Γðk2Þ, where

t ≥ 0; k2; θ2 > 0. We have

zA�ðzÞ ¼
Z ∞

0
eD

�ðzÞttk1−1
e
− t
θ1

θk1Γðk1Þ
dt; and

V�ðzÞ ¼
Z ∞

0
eD

�ðzÞttk2−1
e
− t
θ2

θk2Γðk2Þ
dt;

respectively. Therefore, we get

μðzÞzA�ðzÞνðzÞ¼
Z ∞

0
eρðzÞttk1−1

e
− t
θ1

θk1Γðk1Þ
dt¼ 1

ð1−θ1ρðzÞÞk1
;

μðzÞV�ðzÞνðzÞ¼
Z ∞

0
eρðzÞttk2−1

e
− t
θ2

θk2Γðk2Þ
dt¼ 1

ð1−θ2ρðzÞÞk2
;

respectively. It is easy to know that ϕAþ can be solved from
1−θ1ρðzÞ ¼ 0 andϕV from 1−θ2ρðzÞ ¼ 0. Thatα can be found by
using the following computational method:

1) Take α0 ¼ 1 and α1 ¼ ϕAþ ;

2) Let α2 ¼ α0þα1
2 and α3 ¼ 1

ð1−θ1ρðα2ÞÞk1 :
If α2 > α3, then α0 ¼ α2;
If α2 < α3, then α1 ¼ α2;

3) Repeat 2) until jα1−α0j < ε (small constant). Then, α ¼ α0þα1
2 .

From Theorem 4.1, if the logarithmic asymptotic exists, the
decay rate is given by ln ρ̂ with ρ̂ ¼ ðminfα; 1þ 1

λθ2
gÞ−1.

For the case with a Gamma vacation time, we have E½V � ¼
k2θ2 and VarðVÞ ¼ k2θ

2
2. For the BMAP=Gamma=1 queue with

multiple vacations, the decay rate ρ̂, as a function of θ2, is plotted
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Figure 1. The decay rate in logarithmic sense

LOGARITHMIC ASYMPTOTICS FOR THE GI=G=1-TYPE MARKOV CHAINS 101

INFOR, Vol. 51, No. 2, May 2014, pp. 92–102 DOI 10.3138/infor.51.2.92
ISSN 0315-5986|EISSN 1916-0615 Copyright © 2014 INFOR Journal



in Figure 1. As is shown in Figure 1, the decay rate is constant for
small θ2 (which implies a small mean vacation time). When θ2 is
large, the decay rate changes along with θ2. It is interesting to
note that, if k2 changes, the decay rate (in logarithmic sense) ρ̂
remains the same and yet the tail asymptotics changes as shown
by part b) of Example 4.1. Note that for the Gamma distribution,
k2 can be any positive real number. Since the mean vacation time
is changing with k2, this example shows that the decay rate in
logarithmic sense may or may not change at all when the mean
vacation time changes. The same observation holds for the
variance of the vacation time as well.

Finally, we like to point out that similar results can be obtained
for BMAP=G=1 queues with a single vacation. For this case,
A�ðzÞ remains the same, but B�ðzÞ is changed to

B�ðzÞ ¼ ½V�ðzÞ−V�ð0Þ�A�ðzÞ:

It is easy to see that the convergence radius of B�ðzÞ is again
given by minfϕAþ ;ϕVg. Consequently, Theorem 4.1 and the
above discussion hold for this case.
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