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Abstract—We study tail asymptotics of the stationary distribution for the GI /G/1-type Markov
chain with finitely many background states. Decay rate in the logarithmic sense is identified
under a number of conditions on the transition probabilities. The results are applied to the
BMAP/G/1 queue with vacations. The relationship between vacation time and the decay rate
of the queue length distribution is investigated.
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1. INTRODUCTION
Queueing models have been used in the design of telecommu-
nications, manufacturing, service, and healthcare systems. To
analyze a queueing model, Markov chains are usually utilized.
While explicitly or numerically tractable solutions have been
obtained for a number of Markov chains with a special structure
(e.g., Cohen, 1982; Neuts, 1981, 1989; and Tian and Zhang,
2006), it is more challenging to solve general Markov chains. For
many design and control problems, on the other hand, approxi-
mation results are good enough for applications. For example,
the loss probability, which plays an important role in the design
of queueing systems, can be approximated by tail asymptotics.
In recent years, the study of tail asymptotics of Markov chains
has attracted the attention of researchers and practitioners (e.g.,
Whitt, 1993; Foley and McDonald, 2005; Kimura et al., 2012,
2013; Liand Zhao, 2005a,b; Masuyama, 201 1; Miyazawa, 2009;
and references therein.) In this paper, we study the tail asymp-
totics of the GI/G/1 type Markov chains, and apply the results
to analyze vacation queues.

We consider a two-dimensional Markov chain {(X,,, Y,,): n =
0,1,2, ...} with finitely many background states defined on
state space S = {(0,i),i=1,...,m} U{(n,j),n=1,2, ...,
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j=1,...,m}, where X, is the level variable, and Y, is the
background (phase) variable. The set of states {(0,7),i =1, ...,
my} is called level zero, and the set of states {(n,i),i=1, ...,
m} is called level n, for n > 1. We assume that the Markov chain
is homogeneous along the level direction except for level zero.
By the partition according to levels, the transition probability
matrix P of the Markov chain {(X,,,Y,): n =0,1,2, ... } canbe
expressed in block matrix form:

By, By B, B;

B_l AO Al A2 AR
p=|B2 Aq Ay A - |

By A, A, Ay ---

()

where B, is an myxm, matrix, {B,,n = 1,2, ...} are myxm
matrices, {B_,,n = 1,2, ... } are mxm matrices, and {A,,n =
0,+1,42, ...} are mxm matrices. For convenience, we assume
that my = m. Each block is a collection of transition probabilities
for transitions from some level to another. We call this type of
Markov chains the GI/G/1-type Markov chain. The GI/M/1-
type Markov chain, the M /G /1-type Markov chain and the quasi
birth-and-death process (QBD) are three special examples whose
transition matrices satisfy the properties, respectively: (1) both

92



LOGARITHMIC ASYMPTOTICS FOR THE GI/G/1-TYPE MARKOV CHAINS 93

A,=0and B, =0 forn>2, (2) both A, =0 and B, = 0 for
n<-2,and 3)bothA, =0and B, =0forn >2and n < 2.
The state space of the Markov chain P, based on the above
partition of states, can be expressed as S =J;>oL, with
L,={(n1),(n2), -, (n,m)}, for n=0,1,.... Define
L, = UL, and Ly, = |Ji2,, L;. Define the following gener-
ating functions: for z € C (the set of all complex numbers),

A'(z)= i FA A= iZnA” and B (z) = iZnB"’
n=1 n=1

(2)
Let
$a, = min <, sup{|z] > 1: [[A%(2)];] < oo},
¢p, = minjg; iy sup{|z| > I: |[Bi(z)]u| < oo}. (3)

Note that we shall use [X];; to denote the (i, /)th entry of a
matrix X throughout the paper.

Define y(z) as follows: (a) for 0 < |[z[ < ¢y , x(z) is the
eigenvalue of A*(z) with the greatest real part; (b) at |z9| =
ba.» x(20) = lim_ . |||, (2). In this paper, we fix a > 1 (if
it exists) such that there exists |z| = a satisfying that y(z) = 1
and A*(z) is finite. Whenever « is used, we technically assume
that a exists.

Throughout this paper, the GI/G/1-type Markov chain is
assumed to be aperiodic, irreducible and positive recurrent. Under
this assumption, its stationary distribution z exists uniquely and is
positive element-wise. Partition z into # = (=, z;, ... ) accord-
ingtothelevels, where , = (7,1, 7,5, - - ., ), = 0,1, ...
This paper is concerned with asymptotics of z,, when n is
large. More specificaly, we investigate the limit of Inz, , when
n — oo, which is called the logarithmic asymptotics.

The study of logarithmic asymptotic, in general, is of great
interest because of not only theoretical challenges but also its
potential applications, for instance, in the design and control of
high-speed communication networks. The investigations of
logarithmic asymptotic of the stationary distribution of a
Markov chain include exact geometric decay (a special case
of logarithmic asymptotic that implies logarithmic asymptotic
(not vice versa)), logarithmic asymptotic in the general sense,
and relevant applications. Many studies were contributed for
exact geometric asymptotic of the stationary distribution of
M/G/1-type Markov chain with finitely many background
states. For example, Abate et al. (1994), Falkenberg (1994),
and Mgller (2001) derived the exact geometric decay rate with
progressively refined conditions when « < min{¢A+, ¢s, }
Takine (2004) considered periodicity of the level variable and
analyzed exact geometric decay when a < ¢, and the period
is d. Kimura et al. (2010) analyzed exact geometric decay if
(1) a <min{¢, ,¢p, } and the period of the level variable is
d, (2) ¢p, <a and B’ (z) is a meromorphic function, or
(3) ¢p. = a< ¢, and B’ (z) is a meromorphic function. For

further extension to the GI/G/l-type Markov chain with
finitely many background states, Li and Zhao (2005b)
analyzed exact geometric decay when a < min{¢, , ¢B+} and
{A,,n=0,1,2, ...} is l-arithmetic. Tai and Zhao (2010)
showed that {z,,n = 0,1,2, ...} has an exact geometric decay
if () @<y ,a<pp and B:(a) <oo0; (2) a= ¢, ,and a <
¢5,; (3) ¢pp, <aand lim,_pg B, =D 2 0;0r (4) g < s,
and lim,,_, ¢, B, = D Z 0 (when A" (¢, ) < 00, 7(z) < 1 forall
1 < |z] £ ¢4.). For the GI/G/1-type Markov chain with finitely
many background states, the tail asymptotics have not been found
for other cases, which is the main issue of interest in this paper.

Contributions on general logarithmic asymptotic include
Glynn and Whitt (1994) that analyzed logarithmic asymptotic
for the steady state of general waiting time process under a
Gartner-Ellis condition of the partial sums of the increment
sequence associated waiting time sequence if the increment
sequence is strictly stationary. The results were applied to the
queue length process of the GI/G/1 queue. Nakagawa (2004)
gave a sufficient condition for the logarithmic asymptotic of
the tail of a complex sequence, based on a singularity analysis of
the generating function associated with a complex sequence.
Foley and McDonald (2005) and Miyazawa (2009) analyzed
the logarithmic asymptotic for special OBD processes with
infinitely many background states. Papers on applications of
logarithmic asymptotic rate to create effective bandwidths for
admission control and other network resource allocation include:
Chang et al. (1992), Chang (1993), and Whitt (1993).

In this paper, we characterize logarithmic asymptotic, by
weakening conditions for the exact geometric decay cases, of
the stationary distribution {x,,n = 0, 1,2, ...} forthe GI/G/1-
type Markov chain under some light-tailed assumptions on
transition probabilities. It is shown that the logarithmic asymptotic
rate is determined by three factors: a, ¢4, and ¢p . Our study
offers an comprehensive understanding for logarithmic decay for
the GI/G/1-type Markov chain, and also provides a theoretical
basis for applications.

Queueing models with vacations have many applications
and have been investigated extensively. For a queueing system
with server vacations, apparently, the queue length has much to
do with the vacation time. Existing results indicate that the
relationship between the vacation time and the queue length is
complicated (e.g., Doshi, 1986; Lucantoni et al., 1990; and Tian
and Zhang, 2006). Lucantoni et al. (1990) and Lucantoni
(1991) provided a comprehensive study on the BMAP/G/1
queue with or without vacations. In this paper, we exemplify
the theoretical results on the decay of the stationary distributin
of the GI/G/1-type Markov chain by applying them to the
BMAP/G/1 queue with vacations. We focus on the relationship
between the vacation time and the decay rate of the queue length
distribution. We provide a series of examples to explain the
impact of vacation time on the asymptotic rate. The results are
simple and capture the behavior of the tail of the queue length
distribution. It is interesting to observe that decay rate, which is

INFOR, Vol. 51, No. 2, May 2014, pp. 92-102
ISSN 0315-5986 | EIssN 1916-0615

por 10.3138/infor.51.2.92
Copyright © 2014 INFOR Journal



94 TAI AND HE

given by (min(a, ¢, , ¢B+))_', if it exists, remains constant if
the vacation time is short. The decay rate then changes along with
the convergence norm associated with the vacation time.

The rest of this paper is organized as follows. In Section 2, we
provide some preliminaries. In Section 3, we analyze the decay
rate in the logarithmic sense of the stationary distribution for
the GI/G/1-type Markov chain. In Section 4, we analyze tail
asymptotics of the BMAP/G/1 queue with vacations.

2. PRELIMINARIES

In this section, we give a definition of tail asymptotics for the
stationary distribution, provide matrix notations and factoriza-
tion results, and collect some lemmas.

Consider a sequence {M,,n=1,2,...} of non-negative
mxm matrices satisfying Y 2| M,, < 0. The sequence {M,,,n =
1,2, ...} is called light-tailed if, for all i =1,2,...,m and
j=12,....m,

NgE

[M,); jexp{en} < co, forsome & > 0,

n=1

where e is independent of i and j. We call {M,,,n=1,2, ...}
heavy-tailed if it is not light-tailed.

Along the same line as in Zhao et al. (1998), we define the
R-measures and G-measures for the GI / G/ 1-type Markov chain,
which are matrices R;, for [ < n and G, for [ > n, respectively,
and will be used to analyze tail asymptotics. R, is an mxm
matrix whose (i,/)th entry is the expected number of visits to
state (n,j) before hitting any state in L.,), given that the
process starts in state (/,i). G;,, is an mxm matrix whose (i, j)th
entry is the probability of hitting state (n,j) when the process
enters L,_i) for the first time, given that the process starts in state
(1,i). We call matrices R, , and G,,, the matrices of the expected
numbers of visits to higher levels before returning to lower levels
and the matrices of the first passage probabilities to lower levels,
respectively. We can write R,_; = R;, and G,,_; = G,,; for [ > 0
and n > [, due to the repeating structure in the matrix P. We define
a matrix sequence {®,,n=0,£1,£2, ...} as follows. For
n > 1, partition the transition matrix as

Ley Lyarr)
p. La (Qo U ) .
Lypiy \ 'V 0
Set Pl = (P so =00+ UQV, where O, =
([Ql],_’k)l,k:uw. =320 0. It is shown in Grassmann and
Heyman (1990) that the matrices PL”_],_,n, for 0 <1 <n-1, and
PL’ZL_,(, for 0 < k < n-1, are both independent of n, if n > 1.

Hence, forn > 1,0 <1 <n-1,and 0 < k < n—-1, we can define

(p_k — P["]

nn—k*

@, = P

n-ln?

The following Winner-Hopf factorization is useful (see Li and
Zhao (2005b) for example):

I-A"(2) = (I-R(2)) (1= ) (I-G" (2)),

for z such that A*(z) is finite, where R*(z) =
G'(2) = 521 TG

Define the generating function for the stationary distribution
{m,,n=0,1, ...} and the matrix sequence {R; ,,n = 1,2, ...}
as ' (z) = > o1 2'm, and Ry(z) = D521 Z"Ry ,, respectively.
Then the stationary distribution {x,,n = 0,1, ...} can be ex-
pressed in terms of the R-measures (e.g., Grassmann and Heyman,
1990):

1 7'R, and

n—1

T, = nORO,n + E ann—la
=1

n>1

; 4)

and we have

7' (2)(I-R"(z)) = moRo () (5)
This relation is useful for analyzing tail properties of the station-
ary distribution.

Define ¢, = min, g, sup{|z| > 0: |[z"(z)];| < oo}. Let ¢p
and ¢, be the convergent radii of R*(z) and R;(z) respectively.
Define r(z) as follows: (a) for 0 < |z| < ¢, r(z) is the eigenvalue
with the largest modulus of R*(z); (b) at |z9| = g, r(z9) =
1imz—>zm\z\<\z0|r(z)'

We provide several lemmas for reader’s convenience.

Lemma 2.1. (Theorem 1 in Li and Zhao 2005b) The radii of
convergence satisfy ¢, = ¢r and ¢p, = P,

Lemma 2.2. (Lemma A.4 in Seneta 1981) Let {u;,i =0, 1,
2, ...} be non-negative numbers such that, for all i, j > 0

ui+j Z Mluj

Suppose the set of those integers i > 1 for whichu; > 0is non-
empty and has g.c.d., say d, which satisfies d = 1. Then

u = lim (un)%

n—oo

exists and satisfies 0 < u < oo; further, for all i > 0, u; < u'.
Lemma 2.3. (Theorem 2.1(i) in Tai and Zhao 2010) Consider

an irreducible positive recurrent GI /G /1-type Markov chain.

Assume that A is irreducible. Then limsup, . /7,; =

limsup,,, o0 /7,7 and liminf,_, o, ¢/7,; = liminf,_, /7, ;7 for
any background states j and j'.

Lemma 2.4. (Cauchy-Hadamard Theorem in Markushevich
1965) Consider a power series f () of a complex sequence {c,}
given by f(z) = > wio cu?". Denote by r the radius of conver-

gence of the power series. Then, we have
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lim sup |cn|% =—.
r

n—oo

Remark 2.1. It canlbe shown that if r > 1 in Lemma 2.4, then
lim Supn—mo(Z?inkl )F = %

3. THE DECAY RATE IN THE LOGARITHMIC SENSE

In this section, we characterize the decay rate in the logarithmic
sense of the stationary distribution {z,,n = 0,1, ...} for the
GI/G/1-type Markov chain with finitely many background
states whose transition probability matrix P is given by (1). We
first define the decay rate in the logarithmic sense. For each

k€ {1,2, ---,m}, the upper decay rate in the logarithmic sense
Ay of {m,,n=10,1, ...} along the level direction and the lower
decay rate in the logarithmic sense A, of {z,,n=0,1, ...}

along the level direction can be defined by

- 1
A =limsup—Inz,
n—oco N

and

el
Ay =liminf —In7, 4,
n—-oo n ’

respectively, where 7, , = > /%, 7, and 7, is the kth element of
the vector z,,. If A, = A, £ Ay, then A is referred to as the decay
rate in the logarithmic sense of {z,;,n =0,1, ...} along the
level direction. In particular, if A, is independent of k, we denote
it by A, which is the decay rate in the logarithmic sense of
{m,,n=10,1, ...0} along the level direction. In our study, we
assume that {A,,n=0,1,...} and {B,,n=0,1, ...} are
light-tailed, which is equivalent to that {z,,n =0,1, ...} is
light-tailed (Li and Zhao, 2005b). We also assume that A is
irreducible.

To consider the tail asymptotics, we need to study the non-
boundary and boundary transition probabilities. More specifi-
cally, we consider several cases according to the relationship
between a, ¢4, and ¢, thatis, (i) a < ¢p ; (i) P4, < ¢p_ ;and
(iii) ¢p, < a. To describe our study well, we collect previous
results on exact geometric decay here. If

() a< ¢y ,a< ¢, and B (a) < oo;
(2) a=¢y4,,and a < ¢p ;
() ¢p, <aand lim,_ ¢z B, =D 2 0; or

4) ¢p, < pa, andlim,_ P B, = D 2 0(whenA™ (¢, ) < oo,
x(z) <1for 1<z <y,

then {z,,n =0, 1, ...} was shown to have an exact geometric
decay in Li and Zhao (2005b) and Tai and Zhao (2010), which
implies logarithmic decay. In this section, we weaken conditions
on exact geometric decay, under which the logarithmic decay
exists, but the exact geometric decay may not. Abate et al. (1995)

provided an example for which the exact decay does not exist,
and logarithmic asymptotics exist.

In the rest of this section, we consider several cases for which
the decay rate in the logarithmic sense exists and is identified.

Theorem 3.1. Assume that there exists |z| = a > 1 such that
x(z) = 1 and A*(z) is finite. If a < g, a <Py, {A,,n =0,
+1,42, ...} is I-arithmatic (see Alsmeyer, 1994), and B’ (z) is
a meromorphic function (see Rudin, 1974) on |z| < a + 8, for
some 6 > 0, then the decay rate in the logarithmic sense of
{m,,n=0,1, ...} along the level direction exists, and is
given by

A =-lna.

Proof: It was shown in Li and Zhao (2005b) and Tai and
Zhao (2010) that {z,,,n = 0, 1, ... } has exact geometric decay
when a < ¢4, @ < ¢pg_and B’ (a) < oo, which implies that the
decay rate in the logarithmic sense exists. Hence, we only need to
prove that our theorem is true, when a < ¢y, , a = ¢p,_ and
B’ (a) = oo.

Firstly, we prove that 4n a is an upper bound on the decay rate
of {m,,n=0,1,2, ...} in the logarithmic sense. To do this, we
need to analyze the radius of convergence of z#*(z). It is easy to
see that for |z| < 1,z%(z) is finite. Since we restrict our discussion
to the case: a < ¢, and a@ = ¢y , we have, for 1 < lz] < a, the
inverse of I-R*(z) always exists and Rj(z) is finite on |z] < a.
Noting that for 1 < |z| < &, we have z*(z) = 7o R}y (2)[[-R* (2)] ™",
and 7" (2) is finite. On the other hand, we also have z" (a) = o
elementwise since there is at least one positive entry in each
column of Rj(z), which may be infinite when z = @, and
det(I-R*(a)) = 0. Consequently, a is the radius of convergence
of 7 (z). Hence, by Lemma 2.4 (Cauchy-Hadamard theorem),
we obtain that for each k,

1
limsup—Inz,; = -lna.

n—oo

(6)

Next, we show that 4n a is a lower bound on the lower decay
rate of {m,,n = 0,1,2, ...} in the logarithmic sense. From the
assumption, B’ (z) is a meromorphic function on |z| < a. It is
easy to know that « is the radius of convergence of B (z) when
a< ¢, ,a=¢g and B’ (a) = co. Hence, from Theorem 2 in
Nakagawa (2004), we obtain that for some i, and k,

1, -
lim —In [B,]; x, = —Ina.

n—-oco n

()

where B, = Y2, B;. From equation (4) and Theorem 12 in Zhao
(2000), we have that

T, Z ”ORO‘n Z ﬂOBn-
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Then,

Tk = 70,5, [Buliy ko

which leads to

_ 1 1, -
;h’l 7[”7]{0 > ;h’l 77,'071'0 + ;h’l [Bn}i(%kﬂ.

From equation (7), we have that

.1
liminf —Inz,; > -Ina.
n—-oo N ’

By Lemma 2.3, for each &,

(8)

Finally, combining equations (6) and (8), we obtain that for
each k,

.1
liminf—Inz,; > -Ina.
n—oo n ’

A = lim llnﬁnﬁk =-lna.
n—-oon

Together with the results on exact geometric decay in Li
and Zhao (2005b) and Tai and Zhao (2010), we complete the
proof. O

Remark 3.1. Ir is noted that the case with a = ¢, and
B (a) < o0 is not covered by Theorem 3.1 since B (z) is not
meromorphic on |z| < a. But, from Theorem 3.2 in Tai and Zhao
(2010), if a = ¢pg. < ¢4, and B’ (a) < oo, {m,,n=0,1,...}
has exact geometric decay, and, consequently, A also exists.

Next, we consider the case for which there exists no |z| > 1
such that A*(z) is finite and y(z) = 1. Before stating the results,
we give a definition along the same line with Li and Zhao
(2005a). For a sequence of matrices {M,,,n = 1,2, ...} of size
mxm, if there is a scalar sequence {p,,n = 1,2, ... } and a finite
matrix W Z 0 such that lim,_, M, /p, = W, where M,, = >,
M and p, = > 2, p;, we call the sequence {p,,n=1,2,...}
and the matrix W a uniformly dominant sequence of the matrices
{M,,n=1,2, ...} and the associated ratio matrix, respectively.

Theorem 3.2. Assume that there exists no such |z| > 1 that
A*(z) is finite and y(z) = 1.We also assume ¢, < g . If
{A,,n=1,2,...} has a uniformly dominant sequence
{pp,n=1,2, ...} with associated ratio matrix W satisfying
liminf,_, . %ln Pn 2 —Ingy , then the decay rate in the logarith-
mic sense of {m,,n =0, 1, ...} along the level direction exists,
and is given by

A= —hlqu} .

Proof: Withoutloss of generality, we assume that the (iy, j )th
entry of W is positive. Thus, the entry sequence {[A,]; ;,,n =
1,2, ...} of {A,,n = 1,2, ...} satisfies lim,_, [A,]ig,jo/Pn =

TAI AND HE

Wliyjo > 5 Wi, j,» Where A, =32, A;. Then, there exists
sufficiently large N such that for all n > N,

_ 1 B
[Anlipjo = E[W}io.jopm

which leads to

1 /1 P
7111[ n}iojo ann<2 [W]ioJo) +;lnpn.

Therefore, liminf,_ ,, L1n[A,]ip,jo > -In¢ 4, - Next, from equa-
tion (4), we know

[ee]
Z”z 2 mA T A, 2 A,

I=n

which leads to

1 1
> ;11’177,'1",'0 + ;11’1[ n]

n nJjo loJo

Hence,

1 1
liminf, o —Inz,; > liminf,_—Inz
n n
+liminf,_, ., —In[A,];
n

= liminf,_ o " In] n]ioJo

> —In ¢A+ .

By Lemma 2.1, we obtain ¢4, = ¢g. Since there exists no
such |z] > | that A*(z) is finite and y(z) = 1, we have that
(I-R*(z))™" always exists when 1 < |z| < ¢4, - Hence, by equa-
tion (5), we have that, for any [z| < ¢, , 7*(z) is finite since
¢a, < ¢p,,and, forany |z| > ¢, , 7" (z) is infinite since R*(z) is
infinite. So ¢, is the radius of convergence of z*(z). Then we
have by Lemma 2.4 (Cauchy-Hadamard theorem) that

1
limsup—Inz,; = -Ing,. .
n

n—oo

Consequently, we have

1
lim —Inz,; = -Ing, .
n—oo N

From Lemma 2.3, for every background state j,

N
lim —Inz,; =-Ing,. .

n—oon
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We wish to provide a short note on conditions of Theorem 3.2.
In fact, that {A,,n=1,2, ...} has a uniformly dominant
sequence {p,,n=1,2, ...} with associated ratio matrix W
satisfying lim inf,l_,oo%In Pn=-Ingy, is equivalent to the
condition that there exists an entry sequence, say {[A,];
n=12,...}, of {A,,n=1,2, ...} satisfying liminf
In [A,Jig,jo = ~In¢pa. .

In Theorems 3.1 and 3.2, we condition the logarithmic
decay on the meromorphic function and the size of jumps of
the Markov chain. In the following theorem, we provide a
condition on the fundamental matrix. In the proof of the next
theorem, we do not distinguish whether or not there exists
|z] = @ > 1suchthatA*(z) and ¥(z) = 1, since we can prove the
theorem in a unified way.

Theorem3.3.Ifa < ¢p (ors, < ¢p ,instead, if a does not
exist) where a is given in Theorem 3.1 if it exists, and Q, is
irreducible, then the decay rate in the logarithmic sense of
{m,,n=20,1, ...} along the level direction exists, and is given by

loJo’

n—oo z

A =-Ina (or-In¢, ,instead, if adoes not exist).

Proof: Let R; ;(n) = [3_12, So R®);
u-fold convolution of {R,,n=1,2, ...} (see Li and Zhao
(2005a)). Then R; (l+n) > RJJ(I)RjJ(n). First, we show for
somej, the sequence{ j(m),m=1,2, ...} satisfies Lemma 2.2
if Oy is irreducible. Then a lower bound for the lower decay rate
in the logarithmic sense of {z,;,n = 0,1, ...} can be obtained

;j» where Rl@‘)” denotes

in terms of the convergent parameter of {
in the next two parts.

Part 1: Let e be the column vector of ones. Firstly, if
S, Ae # 0, let Li(Ay) be the set of states in Ly (i.e., level
k) corresponding to positive elements of the vector > 2, A,e,
and I:k(;\z) be the set of states in L; corresponding to zero
elements of the vector > o>, A,e. Let R(2) => X, R,, by
Lemma 4 in Zhao (2000),

= (ZAnﬂZAnJrlaZAnJrZa )Ql('a 1),
n=2 n=2 n=2

where Ql (+, 1) is the first column of the matrix Ql . Therefore, the
jthrow of R(2) is a zero vector if (k,j) € Li(A,). Let Ry, be the
sub-matrix of R(2) corresponding to the index set
L (Ay)XLi(Ay). If Qy is irreducible, R;, is a positive matrix
and, consequently, irreducible since Ql( 1) is positive. So, we
can find an irreducible subclass of R(2). By suitably changing the
order of rows and columns, R(2) can be rewritten as
R(2) = (Rj4,Rz,00),

where RAZ is the submatrix of R(Z) corresponding to the index
set L (A,)XL,(A,). Therefore, we can find a positive element on

the main diagonal of R(2), that is, for some j, the sequence
{iejd»(n),n = 1,2, ...} satisfies Lemma 2.2. In fact, the se-
quence {R;;(n),n=1,2, ..
ij(nO) is positive, then for all n < n, IAQJ-J-
Hence, the set of those integers n > 2 for which

. } is decreasing. If for some n,
(n) is positive.
Rj J(n) <0
has g.c.d. of 1. The set is non-empty since f? ;(2)>0.

Secondly, if 2 1A,e#0 and > 2 2A e=>23Ae=

=0, then we have R; #0, R, = R; =---= (. Hence, we
have the following representations:

7'(2) = mRo(2)(I + 2Ry + ZRi+ --- +Z'Ri+ ---).

We can find a positive element on the main diagonal of R;.
Therefore, we can similarly apply Lemma 2.2 to R7.

Thirdly, if > ;21 Ae=> 20rAe=> 23A,e=---=0,
then we have Ry =R, =R; =---=0 and #, = nyRy,. It is
impossible when non-boundary transition probabilities play a
dominant role in tail behavior.

Part 2: We construct a lower bound for the tail of the
stationary distribution in terms of {iej_j(n),n =1,2,...}. By
the discussion in the first part, we know that there is at least one
positive entry on the main diagonal of R(2) (or R, in the second
case, instead). Without loss of generality, we assume that the
(j,j)th entry on the main diagonal of R(2) (or R, in the second
case, instead) is positive. From equation (3.8) in Li and Zhao
(2005a), we have that

Z Ry, @ ZR@’

I=n

©)

Since there is at least one positive entry in each column of
Ry £ R} (1), we assume without loss of generality that the positive
entry of the jth column of Ry is [Ry(1)];,; = [Ro1li+
[Roo)iyj + - --» where [Ry,]; ; is the (iy,j)th entry of R, ,. We
can find a sufficiently large N such that for some ny <N,
[Ro,n,)ipj > 0, since the tail of [Rj(1)];; tends to 0. From
equation (9), we have that for sufficiently large #,

. ) 0 -
7, > 7Ry, [Z Z Rl_no} <0r 7Ry, ZRI "o> :
I=n

I=n u=1

Then,

n,] > Ty, o RO no i |:Z ZRZ—YLO:| o (10)

I=n u=
Part 3: We analyze the convergent parameter of {R (), n =
1,2, ... }. If there exists an |z| = @ > 1 such that y(z) = 1 and
A*(z) is finite, we have that « is the radius of convergence of
S0t >R R® In fact, for 1 < |z] <a, Y0207 D2 | R®"
= (I-R*(z))™" is finite, but 32 " 3.2, R®" is infinite since
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the inverse of I-R*(a) does not exist. If there exists no |z| > 1
such that A*(z) is finite and y(z) = 1, we have that ¢, is the
radius of convergence of > 027" Y 2 | R®, instead. By Re-

mark 2.1, a (or ¢4 s instead, if @ does not exist) is the convergent

parameter of {R;;(n),n =1,2, ...}. Therefore, from Lemma
2.2 and equation (10), we have

1
liminf ~In7, ; > ~Ina(or-Ing, ,instead, if adoes not exist).
n—-oo n
Since a (or ¢, , instead, if a does not exist) is the radius of
convergence of z*(z) (see corresponding discussion in
Theorem 3.1 and 3.2 for details), by Cauchy-Hadamard
theorem, we have

. | . . .
lim sup;ln;tnij =-Ina(or-Ing, ,instead, if @ does not exist).

n—-oo

So,

.1 . . .
lim —In7, ; = ~Ina(or-Ing, ,instead, if & does not exist).
n—oon +

Then, from Lemma 2.3, we obtain that

A =-Ina (or-In¢, ,instead, if a does not exist). [ ]

If ¢p, <a (or ¢p, <@, if a does not exist), boundary
transition probabilities have a dominant impact on tail behavior.
In the following, we provide conditions on the logarithmic decay
in this situation.

Theorem 3.4.1f¢pp < a(or¢p < P4, instead, if a does not
exist), where a is given in Theorem 3.1 if it exists, and {B,,n =
1,2, ...} has auniformly dominant sequence {p,,n = 1,2, ...}
with associated ratio matrix W satisfying liminf,,_, %ln Dn = —
Ingp. , then the decay rate in the logarithmic sense of {m,,n =
0,1, ...} along the level direction exists, and is given by

A= —ln(/)3+.

Proof: Without loss of generality, we assume that the (i, j,)th
entry of W is positive. Therefore, the entry sequence {[B,]; i ,n =

1,2,...} of {B,,n=1,2, ...} satisfies limn_,oo[Bn],-O;jo/ﬁn =
Wlijo > 3 [Wl,,» where B, = >, B;. Hence, liminf,_ 1
In[B,Jiy, jo > —In ¢, . From equation (4) and Theorem 12 in Zhao
(2000), we have that

T, Z ﬂOROA’n Z ﬂan.

Then,

ﬁ";/o 2 70, [Bn]i():.jOa

which leads to

_ 1 1
;1n7rnlj0 > ;lnﬂo,io +;ln[ nio o

Hence,

1 1
liminf,_ o —Inz,; > liminf,_ o —Inmg,
n n
1. .-
+liminf,_, ., —In[B,];
n

1. -
= liminf,_ o, —In[B,];
n

f0Jo
Z —ln ¢B+ .

On the other hand, we assume that ¢p, < a if a exists. In this
case, ¢, is the radius of convergence of " (2). In fact, we have
that, for any 1< |z| < ¢p, , R;(z) is finite and the inverse of
I-R*(z) exists, therefore, 7 (z) is finite. But, for |z| > ¢ , 7"(2)
is infinite since Rg(z) is infinite. If a does not exist, we assume
that g, < ¢, ,instead. Similarly, forany 1 < |z| < ¢p , R;(z2) is
finite and the inverse of I-R*(z) exists, therefore, 7 (2) is finite;
for z| > ¢y , 7" (2) is infinite, since R (z) is infinite. Thus, ¢ is
the radius of convergence of 7*(z). By Lemma 2.4 (Cauchy-
Hadamard theorem), we have

. |
hflitlp;lnn”o =-Ingp. .
Then,
.
nh_)n;;ln T, = —Ingp. .

From Lemma 2.3, for each background state j, we obtain
N
,}Eﬂ,;ln”w =-Ing¢g,. ]

Theorem 3.5. If ¢p < a(ordp, < s ifadoesnotexist),
where a is given in Theorem 3.1 if it exists, and B (z) is
meromorphic on |z| < ¢y _, then the decay rate in the logarithmic
senseof {m,,n = 0,1, ...} along the level direction exists, and is
given by

A=-lngg, .

Proof: We show that ¢, is the radius of convergence of
7" (z). Since R;(z) is finite on |z| < ¢ and (I-R* (z)) " exists on
1 <z < ¢, , we have that z*(z) is finite on [z| < ¢z, . Due to
7" (¢p,) = mR(Pp,) = 7B’ (¢p,) = oo , we obtain that ¢p,
must be the radius of convergence of z*(z). Then, from Lemma
2.4 (Cauchy-Hadamard theorem), we have that for some k),

1
limsup—Inz,; =-In¢g. .
" :

n—-oo
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Lemma 2.3 implies the above inequality holds when &, is any
background state. Similar to the proof of Theorem 3.1, we have
that—In 5 isalsoalowerboundonliminf,_,, % In7, ,foreach
k. Hence, the decay rate in the logarithmic sense of {z,, n =
0,1, ...} along the level direction exists, and is given by

A = —1n¢B+. D

Remark 3.2. The decay rate in the logarithmic sense may not
exist. A counter example was given in Nakagawa (2004) showing
that the stationary distribution does not decay exponentially.

4. APPLICATIONS TO THE BMAP/G/1 QUEUE WITH
MULTIPLE VACATIONS

In this section, we apply the theoretical results to a single server
exhaustive multiple vacation queue with a batch Markovian
arrival process (BMAP). The BMAP/G/1 queue with multiple
vacations is defined as follows.

¢ Customers arrive according to a BMAP with matrix represen-
tation (Dg,Dy, ...), where {D;,k=0,1,...} are mxm
matrices, D, has negative diagonal elements and non-negative
off-diagonal elements, and {D;,k = 1,2, ...} are non-nega-
tive. Assume that D £ "% D is an irreducible infinitesimal
generator and D # D,. The fundamental arrival rate is defined
as 1 =0> ;2 nD,e, where 0 satisfies @D = 0 and fe = 1.

* There is a single server in the system. Service times are i.i.d.
random variables with distribution function W(z) and finite
mean 1/u;

* We assume that a vacation of the sever begins when the system
becomes empty. At a vacation completion instant, if there is no
customer in the system, then the server takes another vacation
and repeats it until there is at least one customer in the system at
the end of a vacation; For the latter case, the server begins to
serve customers.

® Vacation times are i.i.d. random variables with distribution
function V(¢) and finite mean 1/v.

* The arrival process, the service times and the vacation times
are all assumed to be mutually independent.

We now turn to the study of the Markov chain associated with
the queue length process embedded at departure epoches for the
BMAP/G/1 queue with multiple vacations, whose transition
matrix is of the M/G/1-type and is given by

B, B, B, B
AL A

P:

where {B,,n=0,1, ...} and {A,,n =-1,0,1, ...} are mxm
matrices, which are defined as

[A,];; = P {Given a departure at time 0, which left at least one
customer in the system and the arrival process in phase i, the next
departure occurs with the arrival process in phase j, and during
that service there were n + 1 arrivals}.

[B,);; = P {Given a departure at time 0, which left the system
empty and the arrival process in phase i, the next departure occurs
with the arrival process in phase j, leaving n customers in the
system}.

We similarly define {V,,n=0,1, ...} as follows

[V.)i; = P {Given that a vacation begins at time 0, with the
arrival process in phase i, the end of vacation occurs with the arrival
process in phase j, and during the vacation there were n arrivals}.

We assume that p = 4 < 1 so that the queueing system is
stable and the Markov chain is ergodic. Define generating
functions

A= 24,  BR=Y 7B,
n=-1 n=0

Vi(z) = i 'V,  D(z)= i "D,
n=0 n=0

Without loss of generality, we only consider z in real number
in this section. By analogy to Lucantoni et al. (1990), we have the
following properties

A (2) = A weD“Z)’dW(t), Vi(z) = A coeD*<Z>’dV(z). (11)

From Theorem 1 in Lucantoni et al. (1990),

B'(z) = [I-V*(0)] ' [V*(2)-V"(0)]A" (2). (12)

Define ¢y = min;;;c,sup{z>1:[V*(z)];; < c0}. Recall
that ¢4, and ¢ are radii of convergence of A*(z) and B*(z),
respectively. In our study, we assume that W(¢) and V(z) are
light-tailed. From equation (11), {A,,n =-1,0,1, ...} being
light-tailed is equivalent to W(¢) being light-tailed; and {V,,,n =
0,1, ...} being light-tailed is equivalent to V(¢) being light-
tailed. For z > 0, let p(z) the eigenvalue with the greatest real
part of D*(z) and 7(z) be the Perron-Frobenius eigenvalue of
zZA*(z). Set u(z) and v(z) to be the left and right eigenvectors
corresponding to p(z), respectively, satisfying pu(z)e = 1 and
p(z)v(z) = 1. Then, the following properties hold:

(a) For z > 0, we have that p(z) is strictly increasing in z (see
M-matrix in Seneta (1981)).

(b) p(z) andy(z) are also the left and right eigenvectors of zA*(z)
corresponding to 7(z), respectively.

© 7(z) = [P aw(r).

Lemma 4.1. There exists sufficiently large z such that p(z) >
g .
zn and ¥(z) > z, where 1 <my < m, for 7 > z,.
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Proof: Choose 6> max{-d;;,i=1,2,...,m}, where
{d;;,i=1,2, ... ,m}, are the diagonals of D,. Then, D*(z) +
81 >0 and p(z) + 6 is the Perron-Frobonius eigenvalue of
D*(z) + &l. Since D is irreducible and Dy, # D, D*(z) is irreduc-
ible and we assume without loss of generality that D; # 0.
Therefore, p(z) + & is strictly increasing in z. then

(p(z)+8)" =|det(D*(z)+6I)]
=y 2" +Cmemr 277 G

(w.lLo.g.,cy="..=Cpy11=0,¢,, #0)
Cro—1 1 co 1

=l |7 |14+ 2
cmo < CmOZ 0

If z— oo, then (p(z) +8)" > (|c,,| + 1)|2™]. Therefore,

p(2) = /e, | + [zn—5 if z is sufficiently large. Since the
service time is not zero with probability one, there exists 7, >
0 such that W(t,) < 1, or equivalently, 1-W(z,) > 0. Hence, we
have, for sufficiently large z,

7(2) > / SO aw (1)
)
> (1-W (1))

1= (1)) O Fra 1% 00

<.

O

>
>

Lemma 4.1 provides an approach to find 1 <a < ¢, such
that 7(a) = a. Let W(s) be the Laplace-Stieltjes transform of
W(t) and oy the abscissa of convergence of W, that is, if
Re(s) < oy, W(s) diverges; Re(s) > oy, W(s) converges. Then,
ba. =p'(-oy) and ¢a, > 1 © oy <0 (Falkenberg 1994).
We also have that

7(2)=z2€(L¢a] & W) =p" (~x),x € [ow,0).

Then, we have the following lemma.

Lemma 4.2. A solution to equation W(x)=p~'(-x),
X € [oy,0), exists if and only lflimx_,UWW(x) > pH(=oy).

Proof: Sufficiency: If W is divergent at oy <0 or W is
convergent at oy < 0 and limX%WW(x) > pl(=oy), it is con-
firmed in Falkenberg (1994). If W is convergent at oy, < 0 and
lim,_,, W(x) = p™'(-ow), we have that the solution is
Xo =0y = _P(¢A+)-

Necessity: It is obvious since there is at most a solution to
equation: 7(z) = z,z € (1, ¢4, |- O

If a exists, it is clear that 1 <a < ¢, . It is possible that a
does not exists (See Example 4.2). For this case, we assume
a = oo for convenience. By equation (12), we have that
¢p, =min{g, ,py}. Define p = (minfa, s ,pyv}) ™"
Now, we are ready to state and prove the main result of this
section.

TAI AND HE

Theorem 4.1. Assume that W(t) and V (t) are light-tailed. If
the logarithmic asymptotic of the stationary distribution for the
BMAP/G/1 vacation queue exists, then the decay rate in the
logarithmic sense is given by

A =1Inp.

Furthermore, if exact geometric decay exists, then the decay
rate is given by

1

"7 minfa, gy}

Proof: By an analogous argument to Section 3, we have that
1/p is the radius of convergence of z*(z). By Cauchy-Hadamard
theorem, A = In p. Therefore, if the logarithmic asymptotic of
the stationary distribution for the BMAP/G/1 vacation queue
exists, the decay rate in the logarithmic sense is given by
A=Inp. O

In the following, we present some interesting observations on
the relationship between the vacation time and the tail of the
stationary distribution of the queue length. Methods for comput-
ing ¢4, ¢y and a are provided as well.

Example 4.1. The M /M /1 queue with multiple vacations
In this queueing model, customers arrive according to a Poisson
process with parameter A, the service time has an exponential
distribution with parameter y, and the vacation time has a
distribution V(). For this example, we have

Ww:ﬂ%%’ W@:AeWme
Itis easy to find @ = & and ¢4, = 1 + £, respectively. From

Theorem 4.1, the decay rate p = (min{a, ¢y })™", in the loga-

rithmic sense. Next, we find explicit solutions for a series of cases

with specific distributions of the vacation time.

a) V(t) has an exponential distribution with parameter v For
this case, V*(z) = [§e e dr = - 2. It is easy to
find ¢y = 1 + £. Then we have that (1) if 4 < 4 + v, the exact
geometric decay rate is given by p = 4; (2) if u = A + v, the

decay rate in the logarithmic sense is given by In p with p = ﬁ;

and (3)if u > A + v, the exact geometric decay rate is given by

N _ A
P =7

This example indicates that, if the vacation time is short,
the decay rate of the distribution of the queue length remains
the same, while the distribution of the queue length is different
for different (small) 1/v. So, for cases with a short vacation
time (i.e., small 1/v), the tail asymptotics of the distribution of
queue length is not changed. On the other hand, if the vacation
time is long (i.e., large 1 /v), the decay rate of the distribution
of the queue length changes as the distribuiton of the vacation
time changes. This observation holds, in the logarithmic
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sense, for the general case as indicated by Theorem 4.1 and
demonstrated by Figure 4.1.

b) V(t) has an Erlang distribution (k,0) Consider V( ) with

the probability density function £(z, k, §) = ! where

F)keF( k)’
t>0,k,0 > 0 and k is an integer. In this case, we have

© —t 1)k
V(z) — A S (3)
@) A ¢ oI (k)

Itis easy to find ¢y = 1 + 917. Then we have that (1) if u < 1 + %,
the exact geometric decay rate is given by p = ﬁ; (2) if
H=271+ %, the decay rate in the logarithmic sense is given by
Inp with p = %; and Q) if u> 1 —|—é, the decay rate in the

logarithmic sense is given by p=A4(1+ é)_l. That is,
p = A(min{u, A+ 3})7, for all cases.

We would like to remark that, for the M/M/1 queue with
Erlang vacation times, the asymptotic results can be obtained by
using the matrix-geometric solution z,, = n'lR”_l ,n > 1, for the
queue length at an arbitrary time. For this case, the Jordan
canonical form of the matrix R can be found explicitly. Conse-
quently, the tail asymptotics can be identified. If y < 1+ 3 1 the
Perron-Frobenius eigenvalue of R is simple and z,~p " It
u=21+ é, the Perron- Frobenius eigenvalue of R is not simple
5 I > A+ 1
of Risnot 51mple and zr,~np™". However, the approach does not
work for more general cases (See Example 4.3).

c) V(t) has an Weibull distribution (k,0) Consider V(z) with
the probability density function f(,k, 6) = % (& Yt e @),
where ¢ > 0,k,0 > 0. The mean of V(z) is HF(I +1). We

have that V,, :fg’ (" _i’k(g)k_1 e"@" dt, therefore, V*(2)

!
_/‘0 —A(1 —ztk '

and &, ~n , the Perron-Frobenius eigenvalue

e~ dt For k < 1, Weibull distribution
is heavy- talled. Therefore, we have ¢, = 1. We see from
equation (12) that when the vacation time has a heavy-tailed
distribution, the stationary distribution is also heavy-tailed.

1r-
0.95
0.9
0.85
0.8
0.75
0.7

Decay rate (p)

0.65
0.6
0.55 -

L | L ! L ! L
0-50 0.5 1 1.5 2 25 3 3.5 4

¢}

5 (vacation F(kz, 62))

Figure 1.
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This example shows that the tail of the distributin of the queue
length can be affected greatly by the vacation time distri-
bution, not just by the mean and the variance of the vacation
time. In fact, for this case, the queue length distribution is
heavy-tailed no matter what is the mean and variance of the
vacation time (as long as system stabiltiy is guaranteed.)

Example 4.2. The M/G/1 queue with multiple vacations
Assume that the arrival process is Poisson with parameter 4, the
service time has distribution W(t), and the vacation time has
distribution V(). We also assume that there exists |z,| > 1 such
that V*(z9) = [5e=0)'aV (1) < oo, thatis, V(r) is light-tailed.
Now, we consider W(t) as W(r) =0 for t< 1; W(t) =f, +
[ L e dxfort > 1, where u > 0, for which Falkenberg (1994)
showed that @ does not existif 0 < 4 <z 7. Then, if the logarith-
mic asymptotic exists, the decay rate in the logarithmic sense is
given by Inp with p = (min{¢y, ¢A+})_1

Example 4.3. The BMAP/Gamma/1 queue with multiple
vacations Consider W( ) with the probability density function

flt ky,0) =it el‘lr(k , where 1 > 0,k,,0, > 0, and V(¢) with
1
the probability density functionf (z, k,,0,) = ol 9*28;2) where
t>0,k,,0, > 0. We have
‘o= [ D (@)t g1 _en dt, and
AR A ¢ ()
. -
V* _ D (z)ttkz—l eidt
) A ‘ 0 r(ky)
respectively. Therefore, we get
o e 1
1(z)zZA* (2)v(z :/ A dr=
A= ), k)" (=0
eh 1

)

w2V ()u(z :/ PRSI dt =
DV EH= ), )" ()
respectively. It is easy to know that ¢4, can be solved from
1-0,p(z) = 0and ¢y from 1-6,p(z) = 0. That @ can be found by

using the following computational method:

1) Take g = 1 and a; = ¢, ;
_ ata _ 1 .

2) Letay = 02 Land a3 = (=0 p(a) -

If @y, > a3, then ag = ay;

If a, < az, then a; = Ay,
3) Repeat 2) until |ar;—aty| < € (small constant). Then, a = 239,

From Theorem 4.1, if the logarithmic asymptotic exists, the
decay rate is given by Inp with p = (min{a, 1 + ﬁ})_1

For the case with a Gamma vacation time, we have E[V] =
k,8, and Var(V) = k,63. For the BMAP/Gamma/1 queue with
multiple vacations, the decay rate p, as a function of 9,, is plotted
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in Figure 1. Asis shown in Figure 1, the decay rate is constant for
small 8, (which implies a small mean vacation time). When 6, is
large, the decay rate changes along with 6,. It is interesting to
note that, if k, changes, the decay rate (in logarithmic sense) p
remains the same and yet the tail asymptotics changes as shown
by part b) of Example 4.1. Note that for the Gamma distribution,
k, can be any positive real number. Since the mean vacation time
is changing with k,, this example shows that the decay rate in
logarithmic sense may or may not change at all when the mean
vacation time changes. The same observation holds for the
variance of the vacation time as well.

Finally, we like to point out that similar results can be obtained
for BMAP/G/1 queues with a single vacation. For this case,
A*(z) remains the same, but B*(z) is changed to

It is easy to see that the convergence radius of B*(z) is again
given by min{¢, ,#y}. Consequently, Theorem 4.1 and the
above discussion hold for this case.
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